Skip to main content
Log in

Separation of hexane isomers by introducing “triangular-like and quadrilateral-like channels” in a bcu-type metal-organic framework

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The separation of hexane isomers is of vital importance to produce high quality gasoline in the petrochemical industry. However, the similar vapor pressure and boiling point of hexane isomers bring great difficulties and challenges in the separation process. Sieving effect, which allowing smaller molecules pass through and preventing others, should be a powerful strategy to solve this problem by making good use of porous materials. Therefore, physical separation by metal-organic framework (MOF) materials appears and becomes a burgeoning separation technique in industry. Due to the weak interaction between hexane isomers with absorbents, it puts forward higher requirements for the accurate design of MOF materials with optimal pore system. To address this issue, a novel MOF [Zn9(tba)9(dabco)3]·12DMA·6MeOH (abbreviation: Zn9(tba)9(dabco)3; H2tba = 4-(1H-tetrazol-5-yl)-benzoic acid; dabco = 1,4-diazabicyclo[2.2.2]octane; DMA = N, N-dimethylacetamide) with bcu network has been designed and synthesized by reticular chemistry strategy. Benefiting from the pre-designed topology and suitable linear ligand H2tba and dabco, the structure of Zn9(tba)9(dabco)3 exhibits two types of channels with triangular-like and quadrilateral-like geometry. Zn9(tba)9(dabco)3 with appropriate channel size and shape displays potential selective adsorption capacity of vapor-phase hexane isomers through sieving effect. Moreover, outstanding gas adsorptive separation properties of Zn9(tba)9(dabco)3 could also be speculated by theoretical ideal adsorbed solution theory (IAST), suggesting Zn9(tba)9(dabco)3 can be regarded as a potential adsorbent material for purification natural gas. Breakthrough experiments show that Zn9(tba)9(dabco)3 is capable of discriminating all four hexane isomers at 298 K, and the corresponding research octane number (RON) of the eluted mixture closes to 95, which is higher than the standard for industrially refined hexane blends (about 83). We speculate that sieving effect and diffusion are a synergetic contributory factor in their elution dynamics, which may be ascribed to temperature-dependent interaction between pore aperture and each isomer. This work presents a typical example for design of efficient MOF absorbents by reticular chemistry strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herm, Z. R.; Bloch, E. D.; Long, J. R. Hydrocarbon separations in metal-organic frameworks. Chem. Mater.2014, 26, 323–338.

    CAS  Google Scholar 

  2. Cui, W. G.; Hu, T. L.; Bu, X. H. Metal-organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater.2020, 32, 1806445.

    CAS  Google Scholar 

  3. Peng, L.; Zhu, Q.; Wu, P. L.; Wu, X. J.; Cai, W. Q. High-throughput computational screening of metal-organic frameworks with topological diversity for hexane isomer separations. Phys. Chem. Chem. Phys.2019, 21, 8508–8516.

    CAS  Google Scholar 

  4. Wang, H.; Li, J. Microporous metal-organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc. Chem. Res.2019, 52, 1968–1978.

    CAS  Google Scholar 

  5. Chung, Y. G.; Bai, P.; Haranczyk, M.; Leperi, K. T.; Li, P.; Zhang, H. D.; Wang, T. C.; Duerinck, T.; You, F. Q.; Hupp, J. T. et al. Computational screening of nanoporous materials for hexane and heptane isomer separation. Chem. Mater.2017, 29, 6315–6328.

    CAS  Google Scholar 

  6. Krishna, R.; Smit, B.; Calero, S. Entropy effects during sorption of alkanes in zeolites. Chem. Soc. Rev.2002, 31, 185–194.

    CAS  Google Scholar 

  7. Jasra, R. V.; Bhat, S. G. T. Adsorptive bulk separations by zeolite molecular sieves. Sep. Sci. Technol.1988, 23, 945–989.

    CAS  Google Scholar 

  8. Xue, D. X.; Wang, Q.; Bai, J. F. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev.2019, 378, 2–16.

    CAS  Google Scholar 

  9. Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev.2019, 378, 87–103.

    CAS  Google Scholar 

  10. Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev.2017, 46, 3402–3430.

    CAS  Google Scholar 

  11. Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal-organic frameworks: Structures and functional applications. Mater. Today2019, 27, 43–68.

    CAS  Google Scholar 

  12. Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science2016, 353, 137–140.

    CAS  Google Scholar 

  13. Pei, J. Y.; Shao, K.; Zhang, L.; Wen, H. M.; Li, B.; Qian, G. D. Current status of microporous metal-organic frameworks for hydrocarbon separations. Top. Curr. Chem.2019, 377, 33.

    Google Scholar 

  14. Li, L. B.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S. C.; Wu, H.; Li, J. P.; Zhou, W.; Chen, B. L. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science2018, 362, 443–446.

    CAS  Google Scholar 

  15. Zhao, X.; Wang, Y. X.; Li, D.-S.; Bu, X. H.; Feng, P. Y. Metal-organic frameworks for separation. Adv. Mater2018, 30, 1705189.

    Google Scholar 

  16. Vellingiri, K.; Kumar, P.; Kim, K. H. Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds. Nano Res.2016, 9, 3181–3208.

    CAS  Google Scholar 

  17. Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun.2015, 6, 8697.

    Google Scholar 

  18. Liu, B.; Yao, S.; Liu, X. Y.; Li, X.; Krishna, R.; Li, G. H.; Huo, Q. S.; Liu, Y. L. Two analogous polyhedron-based MOFs with high density of Lewis basic sites and open metal sites: Significant CO2 capture and gas selectivity performance. ACS Appl. Mater. Interfaces2017, 9, 32820–32828.

    CAS  Google Scholar 

  19. Wang, D. M.; Liu, B.; Yao, S.; Wang, T.; Li, G. H.; Huo, Q. S.; Liu, Y. L. A polyhedral metal-organic framework based on the super-molecular building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons. Chem. Commun.2015, 51, 15287–15289.

    CAS  Google Scholar 

  20. Li, B. Y.; Chrzanowski, M.; Zhang, Y. M.; Ma, S. Q. Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev.2016, 307, 106–129.

    CAS  Google Scholar 

  21. Li, J. R.; Yu, J. M.; Lu, W. G.; Sun, L. B.; Sculley, J.; Balbuena, P. B.; Zhou, H. C. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun.2013, 4, 1538.

    Google Scholar 

  22. Bao, Z. B.; Wang, J. W.; Zhang, Z. G.; Xing, H. B.; Yang, Q. W.; Yang, Y. W.; Wu, H.; Krishna, R.; Zhou, W.; Chen, B. L. et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks. Angew. Chem., Int. Ed.2018, 57, 16020–16025.

    CAS  Google Scholar 

  23. Lin, R. B.; Li, L. B.; Zhou, H. L.; Wu, H.; He, C. H.; Li, S.; Krishna, R.; Li, J. P.; Zhou, W.; Chen, B. L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater.2018, 17, 1128–1133.

    CAS  Google Scholar 

  24. Cui, X. L.; Chen, K. J.; Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science2016, 353, 141–144.

    CAS  Google Scholar 

  25. Li, L. B.; Wen, H. M.; He, C. H.; Lin, R. B.; Krishna, R.; Wu, H.; Zhou, W.; Li, J. P.; Li, B.; Chen, B. L. A metal-organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene. Angew. Chem.2018, 130, 15403–15408.

    Google Scholar 

  26. Wang, H.; Dong, X. L.; Lin, J. Z.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q. B.; Tan, K.; Wang, Q. N. et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun.2018, 9, 1745.

    Google Scholar 

  27. Wang, H.; Dong, X. L.; Velasco, E.; Olson, D. H.; Han, Y.; Li, J. One-of-a-kind: A microporous metal-organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving. Energy Environ. Sci.2018, 11, 1226–1231.

    CAS  Google Scholar 

  28. Lv, D. F.; Wang, H.; Chen, Y. W.; Xu, F.; Shi, R. F.; Liu, Z. W.; Wang, X. L.; Teat, S. J.; Xia, Q. B.; Li, Z. et al. Iron-based metal-organic framework with hydrophobic quadrilateral channels for highly selective separation of hexane isomers. ACS Appl. Mater. Interfaces2018, 10, 6031–6038.

    CAS  Google Scholar 

  29. Chen, L.; Yuan, S.; Qian, J. F.; Fan, W.; He, M. Y.; Chen, Q.; Zhang, Z. H. Effective adsorption separation of n-hexane/2-methylpentane in facilely synthesized zeolitic imidazolate frameworks ZIF-8 and ZIF-69. Ind. Eng. Chem. Res.2016, 55, 10751–10757.

    CAS  Google Scholar 

  30. Mendes, P. A. P.; Horcajada, P.; Rives, S.; Ren, H.; Rodrigues, A. E.; Devic, T.; Magnier, E.; Trens, P.; Jobic, H.; Ollivier, J. et al. A complete separation of hexane isomers by a functionalized flexible metal organic framework. Adv. Funct. Mater.2014, 24, 7666–7673.

    CAS  Google Scholar 

  31. Bozbiyik, B.; Lannoeye, J.; De Vos, D. E.; Baron, G. V.; Denayer, J. F. M. Shape selective properties of the Al-fumarate metal-organic framework in the adsorption and separation of n-alkanes, iso-alkanes, cyclo-alkanes and aromatic hydrocarbons. Phys. Chem. Chem. Phys.2016, 18, 3294–3301.

    CAS  Google Scholar 

  32. Wee, L. H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Rodriguez-Albelo, L. M.; Masala, A.; Bordiga, S.; Jiang, J. W.; Navarro, J. A. R. et al. 1D-2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J. Am. Chem. Soc.2017, 139, 819–828.

    CAS  Google Scholar 

  33. Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem., Int. Ed.2006, 45, 1390–1393.

    CAS  Google Scholar 

  34. Bárcia, P. S.; Zapata, F.; Silva, J. A. C.; Rodrigues, A. E.; Chen, B. L. Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework. J. Phys. Chem. B2007, 111, 6101–6103.

    Google Scholar 

  35. Ramsahye, N. A.; Trens, P.; Shepherd, C.; Gonzalez, P.; Trung, T. K.; Ragon, F.; Serre, C. The effect of pore shape on hydrocarbon selectivity on UiO-66(Zr), HKUST-1 and MIL-125(Ti) metal organic frameworks: Insights from molecular simulations and chromatography. Microporous Mesoporous Mater.2014, 189, 222–231.

    CAS  Google Scholar 

  36. Solanki, V. A.; Borah, B. Ranking of metal-organic frameworks (MOFs) for separation of hexane isomers by selective adsorption. Ind. Eng. Chem. Res.2019, 58, 20047–20065.

    CAS  Google Scholar 

  37. Chen, Z. J.; Thiam, Z.; Shkurenko, A.; Weselinski, L. J.; Adil, K.; Jiang, H.; Alezi, D.; Assen, A. H.; O’Keeffe, M.; Eddaoudi, M. Enriching the reticular chemistry repertoire with minimal edge-transitive related nets: Access to highly coordinated metal-organic frameworks based on double six-membered rings as net-coded building units. J. Am. Chem. Soc.2019, 141, 20480–20489.

    CAS  Google Scholar 

  38. Chen, Z. J.; Hanna, S. L.; Redfern, L. R.; Alezi, D.; Islamoglu, T.; Farha, O. K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev.2019, 386, 32–49.

    CAS  Google Scholar 

  39. Guillerm, V.; Maspoch, D. Geometry mismatch and reticular chemistry: Strategies to assemble metal-organic frameworks with non-default topologies. J. Am. Chem. Soc.2019, 141, 16517–16538.

    CAS  Google Scholar 

  40. Herm, Z. R.; Wiers, B. M.; Mason, J. A.; Van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Separation of hexane isomers in a metal-organic framework with triangular channels. Science2013, 340, 960–964.

    CAS  Google Scholar 

  41. Sheldrick, G. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr., Sect. A: Found. Crystallogr.1990, 46, 467–473.

    Google Scholar 

  42. Sheldrick, G. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr.2008, 64, 112–122.

    CAS  Google Scholar 

  43. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem.2015, 71, 3–8.

    Google Scholar 

  44. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package toposPro. Cryst. Growth Des.2014, 14, 3576–3586.

    CAS  Google Scholar 

  45. Wang, D. M.; Liu, Z. H.; Xu, L. L.; Li, C. X.; Zhao, D. A.; Ge, G. W.; Wang, Z. L.; Lin, J. A heterometallic metal-organic framework based on multi-nuclear clusters exhibiting high stability and selective gas adsorption. Dalton Trans.2019, 48, 278–284.

    CAS  Google Scholar 

  46. Yuan, J. Q.; Li, J. T.; Che, S. T.; Li, G. H.; Liu, X. Y.; Sun, X. D.; Zou, L. F.; Zhang, L. R.; Liu, Y. L. Two unique copper cluster-based metal-organic frameworks with high performance for CO2 adsorption and separation. Inorg. Chem. Front.2019, 6, 556–561.

    CAS  Google Scholar 

  47. Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Duttwyler, S.; Xing, H. B. A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew. Chem., Int. Ed.2019, 58, 8145–8150.

    CAS  Google Scholar 

  48. Gao, S.; Morris, C. G.; Lu, Z. Z.; Yan, Y.; Godfrey, H. G. W.; Murray, C.; Tang, C. C.; Thomas, K. M.; Yang, S. H.; Schröder, M. Selective hysteretic sorption of light hydrocarbons in a flexible metal-organic framework material. Chem. Mater.2016, 28, 2331–2340.

    CAS  Google Scholar 

  49. He, Y. P.; Tan, Y. X.; Zhang, J. Tuning a layer to a pillared-layer metal-organic framework for adsorption and separation of light hydrocarbons. Chem. Commun.2013, 49, 11323–11325.

    CAS  Google Scholar 

  50. Liu, B.; Yao, S.; Shi, C.; Li, G. H.; Huo, Q. S.; Liu, Y. L. Significant enhancement of gas uptake capacity and selectivity via the judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal-organic frameworks. Chem. Commun.2016, 52, 3223–3226.

    CAS  Google Scholar 

  51. He, Y. B.; Zhang, Z. J.; Xiang, S. C.; Fronczek, F. R.; Krishna, R.; Chen, B. L. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun.2012, 48, 6493–6495.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 21771078 and 21621001), the 111 Project (No. B17020), the National Key Research and Development Program of China (No. 2016YFB0701100), and Zhejiang Provincial Natural Science Foundation of China (No. LQ18B010002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Han or Yunling Liu.

Electronic Supplementary Material

12274_2020_2714_MOESM1_ESM.pdf

Separation of hexane isomers by introducing “triangular-like and quadrilateral-like channels” in a bcu-type metal-organic framework

Appendix

Supplementary material, approximately 389 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Dong, X., Han, Y. et al. Separation of hexane isomers by introducing “triangular-like and quadrilateral-like channels” in a bcu-type metal-organic framework. Nano Res. 14, 526–531 (2021). https://doi.org/10.1007/s12274-020-2714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2714-z

Keywords

Navigation