Skip to main content
Log in

Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of high-efficiency peroxidase mimetics is highly desirable in view of high cost and low stability of natural enzymes. From the perspective of mimicking active site microenvironment at low cost, we herein report a novel histidine-functionalized graphene quantum dot (His-GQD)/hemin complex, which exhibits the highest catalytic rate for the peroxidase-based chromogenic reaction among the hemin-containing mimetics reported so far. Also, our peroxidase mimetic shows excellent tolerance to strongly acidic conditions and can function in a wide temperature range. Lineweaver-Burk plots and comprehensive electron paramagnetic resonance analysis reveal a ping-pong type catalytic mechanism for this mimetic. In addition, His-GQD/hemin demonstrates high efficiency and accuracy in detecting H2O2 and blood glucose. Our work provides an effective design of artificial enzymes for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garg, B.; Bisht, T.; Ling, Y. C. Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules2015, 20, 14155–14190.

    Article  CAS  Google Scholar 

  2. Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun.2017, 53, 424–427.

    Article  CAS  Google Scholar 

  3. Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science1988, 240, 433–439.

    Article  CAS  Google Scholar 

  4. Gharibi, H.; Moosavi-Movahedi, Z.; Javadian, S.; Nazari, K.; Moosavi-Movahedi, A. A. Vesicular mixed gemini-SDS-hemin-imidazole complex as a peroxidase-like nano artificial enzyme. J. Phys. Chem. B2011, 115, 4671–4679.

    Article  CAS  Google Scholar 

  5. Poulos, T. L. Heme enzyme structure and function. Chem. Rev.2014, 114, 3919–3962.

    Article  CAS  Google Scholar 

  6. Veitch, N. C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry2004, 65, 249–259.

    Article  CAS  Google Scholar 

  7. Sang, Y. J.; Huang, Y. Y.; Li, W.; Ren, J. S.; Qu, X. G. Bioinspired design of Fe3+-doped mesoporous carbon nanospheres for enhanced nanozyme activity. Chem.—Eur. J.2018, 24, 7259–7263.

    Article  CAS  Google Scholar 

  8. Castriciano, M. A.; Romeo, A.; Baratto, M. C.; Pogni, R.; Scolaro, L. M. Supramolecular mimetic peroxidase based on hemin and PAMAM dendrimers. Chem. Commun.2008, 688–690.

  9. Yang, D. K.; Kuo, C. J.; Chen, L. C. Synthetic multivalent DNAzymes for enhanced hydrogen peroxide catalysis and sensitive colorimetric glucose detection. Anal. Chim. Acta2015, 856, 96–102.

    Article  CAS  Google Scholar 

  10. Wang, X. Q.; Wang, C.; Pan, M. H.; Wei, J. T.; Jiang, F. P.; Lu, R. S.; Liu, X.; Huang, Y. H.; Huang, F. Chaperonin-nanocaged hemin as an artificial metalloenzyme for oxidation catalysis. ACS Appl. Mater. Interfaces2017, 9, 25387–25396.

    Article  CAS  Google Scholar 

  11. Villarino, L.; Splan, K. E.; Reddem, E.; Alonso-Cotchico, L.; Gutierrez De Souza, C.; Lledós, A.; Maréchal, J. D.; Thunnissen, A. M. W. H.; Roelfes, G. An artificial heme enzyme for cyclopropanation reactions. Angew. Chem., Int. Ed.2018, 57, 7785–7789.

    Article  Google Scholar 

  12. Chen, K.; Wu, C. D. Designed fabrication of biomimetic metal—organic frameworks for catalytic applications. Coord. Chem. Rev.2019, 378, 445–465.

    Article  CAS  Google Scholar 

  13. Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano2011, 5, 1282–1290.

    Article  CAS  Google Scholar 

  14. Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C. Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem., Int. Ed.2012, 124, 3888–3891.

    Article  Google Scholar 

  15. Li, Y. J.; Huang, X. Q.; Li, Y. J.; Xu, Y. X.; Wang, Y.; Zhu, E. B.; Duan, X. F.; Huang, Y. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C—H bond in toluene. Sci. Rep.2013, 3, 1787.

    Article  Google Scholar 

  16. Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed.2015, 54, 7176–7180.

    Article  CAS  Google Scholar 

  17. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun.2018, 9, 1440.

    Article  Google Scholar 

  18. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater.2010, 22, 2206–2210.

    Article  CAS  Google Scholar 

  19. Singh, S.; Mitra, K.; Singh, R.; Kumari, A.; Sengupta, S. K.; Misra, N.; Maiti, P.; Ray, B. Colorimetric detection of hydrogen peroxide and glucose using brominated graphene. Anal. Methods2017, 9, 6675–6681.

    Article  CAS  Google Scholar 

  20. Hu, Y. H.; Gao, X. J. J.; Zhu, Y. Y.; Muhammad, F.; Tan, S. H.; Cao, W.; Lin, S. C.; Jin, Z.; Gao, X. F.; Wei, H. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater.2018, 30, 6431–6439.

    Article  CAS  Google Scholar 

  21. Zhu, S. Y.; Zhao, X. E.; You, J. M.; Xu, G. B.; Wang, H. Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection. Analyst2015, 140, 6398–6403.

    Article  CAS  Google Scholar 

  22. Xin, Q.; Liu, Q.; Geng, L. L.; Fang, Q. J.; Gong, J. R. Chiral nanoparticle as a new efficient antimicrobial nanoagent. Adv. Healthc. Mater.2017, 6, 1601011.

    Article  Google Scholar 

  23. Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun.2014, 5, 4596.

    Article  CAS  Google Scholar 

  24. Sun, H. J.; Wu, L.; Wei, W. L.; Qu, X. G. Recent advances in graphene quantum dots for sensing. Mater. Today2013, 16, 433–442.

    Article  CAS  Google Scholar 

  25. Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew. Chem., Int. Ed.2007, 46, 4285–4289.

    Article  CAS  Google Scholar 

  26. Wei, J. H.; Qiu, J. J.; Li, L.; Ren, L. Q.; Zhang, X. W.; Chaudhuri, J.; Wang, S. E. A reduced graphene oxide based electrochemical biosensor for tyrosine detection. Nanotechnology2012, 23, 335707.

    Article  Google Scholar 

  27. Ryabova, E. S.; Dikiy, A.; Hesslein, A. E.; Bjerrum, M. J.; Ciurli, S.; Nordlander, E. Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. J. Biol. Inorg. Chem.2004, 9, 385–395.

    Article  CAS  Google Scholar 

  28. Kersten, P. J.; Kalyanaraman, B.; Hammel, K. E.; Reinhammar, B.; Kirk, T. K. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J.1990, 268, 475–480.

    Article  CAS  Google Scholar 

  29. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc.2018, 13, 1506–1520.

    Article  CAS  Google Scholar 

  30. Radika, K.; Northrop, D. A new kinetic diagnostic for enzymatic mechanisms using alternative substrates. Anal. Biochem.1984, 141, 413–417.

    Article  CAS  Google Scholar 

  31. Qin, F. Q.; Jia, S. Y.; Wang, F. F.; Wu, S. H.; Songa, J.; Liu, Y. Hemin@metal—organic framework with peroxidase-like activity and its application to glucose detection. Catal. Sci. Technol.2013, 3, 2761–2768.

    Article  CAS  Google Scholar 

  32. Chen, Q.; Chen, J.; Gao, C. J.; Zhang, M. L.; Chen, J. Y.; Qiu, H. D. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst2015, 140, 2857–2863.

    Article  CAS  Google Scholar 

  33. Li, D. L.; Wu, S. H.; Wang, F. F.; Jia, S. Y.; Liu, Y.; Han, X.; Zhang, L. W.; Zhang, S. L.; Wu, Y. M. A facile one-pot synthesis of hemin/ZIF-8 composite as mimetic peroxidase. Mater. Lett.2016, 178, 48–51.

    Article  CAS  Google Scholar 

  34. Todd, M. J.; Gomez, J. Enzyme kinetics determined using calorimetry: A general assay for enzyme activity? Anal. Biochem.2001, 296, 179–187.

    Article  CAS  Google Scholar 

  35. Wang, H.; Liu, C. Q.; Liu, Z.; Ren, J. S.; Qu, X. G. Specific oxygenated groups enriched graphene quantum dots as highly efficient enzyme mimics. Small2018, 14, 1703710.

    Article  Google Scholar 

  36. Peisach, J.; Blumberg, W. E. Low-temperature epr studies of the effects of protein conformation on the symmetry of heme in high-spin ferriheme proteins. In Structure and Function of Oxidation-Reduction Enzymes; Åkeson, Å.; Ehrenberg, A., Eds.; Academic Press: New York, San Francisco, London, 1972; pp 191–203.

    Chapter  Google Scholar 

  37. Nistor, S. V.; Goovaerts, E.; Van Doorslaer, S.; Dewilde, S.; Moens, L. EPR-spectroscopic evidence of a dominant His—FeIII—His coordination in ferric neuroglobin. Chem. Phys. Lett.2002, 361, 355–361.

    Article  CAS  Google Scholar 

  38. Hayashi, T.; Murata, D.; Makino, M.; Sugimoto, H.; Matsuo, T.; Sato, H.; Shiro, Y.; Hisaeda, Y. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene. Inorg. Chem.2006, 45, 10530–10536.

    Article  CAS  Google Scholar 

  39. Kitagishi, H.; Tamaki, M.; Ueda, T.; Hirota, S.; Ohta, T.; Naruta, Y.; Kano, K. Oxoferryl porphyrin/hydrogen peroxide system whose behavior is equivalent to hydroperoxoferric porphyrin. J. Am. Chem. Soc.2010, 132, 16730–16732.

    Article  CAS  Google Scholar 

  40. Rodríguez-López, J. N.; Lowe, D. J.; Hernández-Ruiz, J.; Hiner, A. N. P.; García-Cánovas, F.; Thorneley, R. N. F. Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: Identification of intermediates in the catalytic cycle. J. Am. Chem. Soc.2001, 123, 11838–11847.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this work from the National Key R&D Program “nanotechnology” special focus (No. 2016YFA0201600), the National Natural Science Foundation of China (Nos. 21422303, 21573049, 21872043, and 81602643), Beijing Natural Science Foundation (No. 2142036), and the Knowledge Innovation Program, Youth Innovation Promotion Association, and Special Program of “One Belt One Road” of CAS. The authors thank Dr. Dexing Li for the technique support and many helpful discussions for the ITC testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ru Gong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Q., Jia, X., Nawaz, A. et al. Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots. Nano Res. 13, 1427–1433 (2020). https://doi.org/10.1007/s12274-020-2678-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2678-z

Keywords

Navigation