Skip to main content
Log in

Probing enzyme-nanoparticle interactions using combinatorial gold nanoparticle libraries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The interaction of nanoparticles with proteins is extremely complex, important for understanding the biological properties of nanomaterials, but is very poorly understood. We have employed a combinatorial library of surface modified gold nanoparticles to interrogate the relationships between the nanoparticle surface chemistry and the specific and nonspecific binding to a common, important, and representative enzyme, acetylcholinesterase (AChE). We also used Bayesian neural networks to generate robust quantitative structure-property relationship (QSPR) models relating the nanoparticle surface to the AChE binding that also provided significant understanding into the molecular basis for these interactions. The results illustrate the insights that result from a synergistic blending of experimental combinatorial synthesis and biological testing of nanoparticles with quantitative computational methods and molecular modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epa, V. C.; Winkler, D. A.; Tran, L.; Fadeel, B.; Pietroiusti, A.; Shvedova, A. A. Computational approaches. In Adverse effects of engineered nanomaterials: Exposure, toxicology, and impact on human health; Fadeel, B.; Pietroiusti, A.; Shvedova, A. A., Eds.; Academic Press: London, 2012; pp 85–96.

    Chapter  Google Scholar 

  2. Maynard, A.; Rejeski, D. Too small to overlook. Nature 2009, 460, 174–174.

    Article  Google Scholar 

  3. Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.

    Article  Google Scholar 

  4. Hartig, W.; Kacza, J.; Paulke, B. R.; Grosche, J.; Bauer, U.; Hoffmann, A.; Elsinghorst, P. W.; Gutschow, M. In vivo labelling of hippocampal beta-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles. Euro. J. Neurosci. 2010, 31, 99–109.

    Article  Google Scholar 

  5. Winkler, D. A.; Mombelli, E.; Pietroiusti, A.; Tran, L.; Worth, A.; Fadeel, B.; McCall, M. J. Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential. Toxicology 2013, 313, 15–23.

    Article  Google Scholar 

  6. Zhang, B.; Xing, Y. H.; Li, Z. W.; Zhou, H. Y.; Mu, Q. X.; Yan, B. Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett. 2009, 9, 2280–2284.

    Article  Google Scholar 

  7. Zhou, H. Y.; Mu, Q. X.; Gao, N. N.; Liu, A. F.; Xing, Y. H.; Gao, S. L.; Zhang, Q.; Qu, G. B.; Chen, Y. Y.; Liu, G. et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett. 2008, 8, 859–865.

    Article  Google Scholar 

  8. Weissleder, R.; Kelly, K.; Sun, E. Y.; Shtatland, T.; Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 2005, 23, 1418–1423.

    Article  Google Scholar 

  9. You, C. C.; De, M.; Han, G.; Rotello, V. M. Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 12873–12881.

    Article  Google Scholar 

  10. Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055.

    Article  Google Scholar 

  11. Lesniak, A.; Fenaroli, F.; Monopoli, M. R.; Aberg, C.; Dawson, K. A.; Salvati, A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6, 5845–5857.

    Article  Google Scholar 

  12. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270.

    Article  Google Scholar 

  13. Epa, V. C.; Burden, F. R.; Tassa, C.; Weissleder, R.; Shaw, S.; Winkler, D. A. Modeling biological activities of nanoparticles. Nano Lett. 2012, 12, 5808–5812.

    Article  Google Scholar 

  14. Yan, Y.; Bjoernmalm, M.; Caruso, F. Particle carriers for combating multidrug-resistant cancer. ACS Nano 2013, 7, 9512–9517.

    Article  Google Scholar 

  15. Calvaresi, M.; Arnesano, F.; Bonacchi, S.; Bottoni, A.; Calò, V.; Conte, S.; Falini, G.; Fermani, S.; Losacco, M.; Montalti, M. et al. C60@lysozyme: Direct observation by nuclear magnetic resonance of a 1:1 fullerene protein adduct. ACS Nano 2014, 8, 1871–1877.

    Article  Google Scholar 

  16. Rotundo, R. L. Expression and localization of acetylcholine-esterase at the neuromuscular junction. J. Neurocytol. 2003, 32, 743–766.

    Article  Google Scholar 

  17. Giacobini, E. Cholinergic function and Alzheimer’s disease. Int. J. Geriatr Psych. 2003, 18, S1–S5.

    Article  Google Scholar 

  18. Perry, E. K.; Perry, R. H.; Blessed, G.; Tomlinson, B. E. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropath. Appl. Neuro. 1978, 4, 273–277.

    Article  Google Scholar 

  19. Perry, E. K.; Tomlinson, B. E.; Blessed, G.; Bergmann, K.; Gibson, P. H.; Perry, R. H. Correlation of cholinergic abnormalities with senile plaques and mental test-scores in senile dementia. Brit. Med. J. 1978, 2, 1457–1459.

    Article  Google Scholar 

  20. Howard, R.; McShane, R.; Lindesay, J.; Ritchie, C.; Baldwin, A.; Barber, R.; Burns, A.; Dening, T.; Findlay, D.; Holmes, C. et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. New Engl. J. Med. 2012, 366, 893–903.

    Article  Google Scholar 

  21. Pastorin, G.; Marchesan, S.; Hoebeke, J.; Da Ros, T.; Ehret-Sabatier, L.; Briand, J. P.; Prato, M.; Bianco, A. Design and activity of cationic fullerene derivatives as inhibitors of acetylcholinesterase. Org. Biomol. Chem. 2006, 4, 2556–2562.

    Article  Google Scholar 

  22. Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliver. Rev. 2009, 61, 428–437.

    Article  Google Scholar 

  23. Adikrisna, R.; Tanaka, S.; Muramatsu, S.; Aihara, A.; Ban, D.; Ochiai, T.; Irie, T.; Kudo, A.; Nakamura, N.; Yamaoka, S. et al. Identification of pancreatic cancer stem cells and selective toxicity of chemotherapeutic agents. Gastroenterology. 2012, 143, 234–245.

    Article  Google Scholar 

  24. Mu, Q. X.; Liu, W.; Xing, Y. H.; Zhou, H. Y.; Li, Z. W.; Zhang, Y.; Ji, L. H.; Wang, F.; Si, Z. K.; Zhang, B. et al. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J. Phys. Chem. C 2008, 112, 3300–3307.

    Article  Google Scholar 

  25. Zhou, H. Y.; Jiao, P. F.; Yang, L.; Li, X.; Yan, B. Enhancing cell recognition by scrutinizing cell surfaces with a nanoparticle array. J. Am. Chem. Soc. 2011, 133, 680–682.

    Article  Google Scholar 

  26. Zhou, H. Y.; Li, X.; Lemoff, A.; Zhang, B.; Yan, B. Structural confirmation and quantification of individual ligands from the surface of multi-functionalized gold nanoparticles. Analyst 2010, 135, 1210–1213.

    Article  Google Scholar 

  27. Chen, Y.; Barkley, M. D. Toward understanding tryptophan fluorescence in proteins. Biochem. 1998, 37, 9976–9982.

    Article  Google Scholar 

  28. Crammer, J.; Neuberger, A. The state of tyrosine in egg albumin and in insulin as determined by spectrophotometric titration. Biochem. J. 1943, 37, 302–310.

    Google Scholar 

  29. Teale, F. W. J.; Weber, G. Ultraviolet fluorescence of the aromatic amino acids. Biochem. J. 1957, 65, 476–482.

    Google Scholar 

  30. Epa, V. C.; Yang, J.; Mei, Y.; Hook, A. L.; Langer, R.; Anderson, D. G.; Davies, M. C.; Alexander, M. R.; Winkler, D. A. Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. J. Mater. Chem. 2012, 22, 20902–20906.

    Article  Google Scholar 

  31. Burden, F. R.; Winkler, D. A. Optimal sparse descriptor selection for QSAR using Bayesian methods. QSAR Comb. Sci. 2009, 28, 645–653.

    Article  Google Scholar 

  32. Burden, F. R.; Winkler, D. A. Robust QSAR models using Bayesian regularized neural networks. J. Med. Chem. 1999, 42, 3183–3187.

    Article  Google Scholar 

  33. Burden, F. R.; Winkler, D. A. An optimal self-pruning neural network and nonlinear descriptor selection in QSAR. QSAR Comb. Sci. 2009, 28, 1092–1097.

    Article  Google Scholar 

  34. Salahinejad, M.; Le, T. C.; Winkler, D. A. Aqueous solubility prediction: Do crystal lattice interactions help? Mol. Pharmaceut. 2013, 10, 2757–2766.

    Article  Google Scholar 

  35. Salahinejad, M.; Le, T. C.; Winkler, D. A. Capturing the crystal: Prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds. J. Chem. Inf. Model. 2013, 53, 223–229.

    Article  Google Scholar 

  36. Cheung, J.; Gary, E. N.; Shiomi, K.; Rosenberry, T. L. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med. Chem. Lett. 2013, 4, 1091–1096.

    Article  Google Scholar 

  37. Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95.

    Article  Google Scholar 

  38. Eftink, M. R.; Zajicek, J. L.; Ghiron, C. A. Hydrophobic quencher of protein fluorescence-2,2,2-trichloroethanol. Biochim. Biophys. Acta 1977, 491, 473–481.

    Article  Google Scholar 

  39. Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. DRAGON software: An easy approach to molecular descriptor calculations. MATCHCommun. Math. Co. 2006, 56, 237–248.

    Google Scholar 

  40. Le, T.; Epa, V. C.; Burden, F. R.; Winkler, D. A. Quantitative structure-property relationship modeling of diverse materials properties. Chem. Rev. 2012, 112, 2889–2919.

    Article  Google Scholar 

  41. Hagan, M. T.; Menhaj, M. Training feed forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Winkler or Bing Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Winkler, D.A., Epa, V.C. et al. Probing enzyme-nanoparticle interactions using combinatorial gold nanoparticle libraries. Nano Res. 8, 1293–1308 (2015). https://doi.org/10.1007/s12274-014-0618-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0618-5

Keywords

Navigation