Skip to main content
Log in

The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Rehabilitation exercise is a crucial non-pharmacological intervention for the secondary prevention and treatment of cardiovascular diseases, effectively ameliorating cardiac remodeling in patients. Exercise training can mitigate cardiomyocyte apoptosis, reduce extracellular matrix deposition and fibrosis, promote angiogenesis, and regulate inflammatory response to improve cardiac remodeling. This article presents a comprehensive review of recent research progress, summarizing the pivotal role and underlying mechanism of rehabilitation exercise in improving cardiac remodeling and providing valuable insights for devising effective rehabilitation treatment programs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jegier A, et al. Comprehensive cardiac rehabilitation as the keystone in the secondary prevention of cardiovascular disease. Kardiol Pol. 2021;79(7–8):901–16.

    Article  PubMed  Google Scholar 

  2. Knuuti J, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–77.

    Article  PubMed  Google Scholar 

  3. Fang J, et al. Use of outpatient cardiac rehabilitation among heart attack survivors - 20 states and the District of Columbia, 2013 and four states, 2015. MMWR Morb Mortal Wkly Rep. 2017;66(33):869–73.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gabrys L, Schmidt C. Prescription and utilization of sports therapy programs following cardiac rehabilitation 2006–2013. Rehabilitation (Stuttg). 2020;59(1):42–7.

    PubMed  Google Scholar 

  5. You-gen ZHOU, et al. Influence of cognitive behavioral therapy on psychology and compliance to exercise prescription in CHD patients. Chinese Journal of Cardiovascular Rehabilitation Medicine. 2018;27(4):369–72.

    Google Scholar 

  6. Baman JR, Sekhon S, Maganti K. Cardiac rehabilitation. JAMA. 2021;326(4):366.

    Article  PubMed  Google Scholar 

  7. Piercy KL, Troiano RP. Physical activity guidelines for Americans from the US Department of Health and Human Services. Circ Cardiovasc Qual Outcomes. 2018;11(11):e005263.

    Article  PubMed  Google Scholar 

  8. Zhou MC, Hong Y. Updated essentials of scientific exercise and training in the 6th edition of the guidelines for cardiac rehabilitation programs by American Association of Cardiovascular and Pulmonary Rehabilitation [J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease. 2021;29(6):1–6.

    Google Scholar 

  9. Cornelis J, et al. Comparing exercise training modalities in heart failure: A systematic review and meta-analysis. Int J Cardiol. 2016;221:867–76.

  10. Arnett DK, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;140(11):e596–646.

    PubMed  PubMed Central  Google Scholar 

  11. Feito Y, et al. High-Intensity Functional Training (HIFT): Definition and research implications for improved fitness. Sports (Basel). 2018;6(3).

  12. Ribeiro P, et al. High-intensity interval training in patients with coronary heart disease: prescription models and perspectives. Ann Phys Rehabil Med. 2017;60(1):50–7.

    Article  PubMed  Google Scholar 

  13. Eser P. et al. Short- and long-term effects of high-intensity interval training vs. moderate-intensity continuous training on left ventricular remodeling in patients early after ST-segment elevation myocardial infarction-The HIIT-EARLY randomized controlled trial. Front Cardiovasc Med. 2022;9:869501.

  14. Dayan A, et al. Swimming exercise training prior to acute myocardial infarction attenuates left ventricular remodeling and improves left ventricular function in rats. Ann Clin Lab Sci. 2005;35(1):73–8.

  15. Zhao S, et al. Effect of Tai Chi on cardiac function in patients with myocardial infarction: a protocol for a randomized controlled trial. Medicine (Baltimore). 2021;100(42):e27446.

    Article  PubMed  Google Scholar 

  16. Mao S. et al. Baduanjin Exercise prevents post-myocardial infarction left ventricular remodeling (BE-PREMIER trial): Design and rationale of a pragmatic randomized controlled trial. Cardiovasc Drugs Ther. 2016;30(3):315–22.

  17. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol. 2012;302(1):H10-23.

    Article  CAS  PubMed  Google Scholar 

  18. Wang B, et al. Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomed Pharmacother. 2020;131:110690.

    Article  CAS  PubMed  Google Scholar 

  19. Souza LM, et al. Effects of late aerobic exercise on cardiac remodeling of rats with small-sized myocardial infarction. Arq Bras Cardiol. 2021;116(4):784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao Z, et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. J Cell Mol Med. 2019;23(12):8328–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guizoni DM, et al. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol. 2016;221:406–12.

  22. Cai M, Wang L, Ren YL. Effect of exercise training on left ventricular remodeling in patients with myocardial infarction and possible mechanisms. World J Clin Cases. 2021;9(22):6308–18.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marcin T, et al. Effect of self-tailored high-intensity interval training versus moderate-intensity continuous exercise on cardiorespiratory fitness after myocardial infarction: a randomised controlled trial. Ann Phys Rehabil Med. 2022;65(1):101490.

    Article  PubMed  Google Scholar 

  24. Trachsel LD, et al. The impact of high-intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction-a randomized training intervention pilot study. Clin Cardiol. 2019;42(12):1222–31.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo Y, et al. Cardiomyocyte homeodomain-interacting protein kinase 2 maintains basal cardiac function via extracellular signal-regulated kinase signaling. Circulation. 2019;140(22):1820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Q, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74: 103713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, et al. miR-17-3p Contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics. 2017;7(3):664–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu Y, et al. Exercise-generated β-aminoisobutyric acid (BAIBA) reduces cardiomyocyte metabolic stress and apoptosis caused by mitochondrial dysfunction through the miR-208b/AMPK pathway. Front Cardiovasc Med. 2022;9:803510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu X, et al. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther. 2022;30(1):400–14.

    Article  CAS  PubMed  Google Scholar 

  30. Gao R, et al. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation. 2021;144(4):303–17.

    Article  CAS  PubMed  Google Scholar 

  31. Peixoto TC, et al. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: a randomized controlled trial. Can J Cardiol. 2015;31(3):308–13.

    Article  PubMed  Google Scholar 

  32. Ghardashi AA, et al. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia/reperfusion injury. J Cell Commun Signal. 2019;13(2):255–67.

    Article  Google Scholar 

  33. Bo W, et al. The roles of FGF21 and ALCAT1 in aerobic exercise-induced cardioprotection of postmyocardial infarction mice. Oxid Med Cell Longev. 2021;2021:8996482.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ma Y, et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with myocardial infarction. Int J Mol Sci. 2021;22(22).

  35. Jia D, et al. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. J Cell Physiol. 2019;234(12):23705–18.

    Article  CAS  PubMed  Google Scholar 

  36. Qu X, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep. 2017;7:42657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang JC, et al. Effect of lncRNA GAS5 on rats with acute myocardial infarction through regulating miR-21. Eur Rev Med Pharmacol Sci. 2019;23(19):8573–9.

    PubMed  Google Scholar 

  38. Farsangi SJ, et al. Modulation of the expression of long non-coding RNAs H19, GAS5, and MIAT by endurance exercise in the hearts of rats with myocardial infarction. Cardiovasc Toxicol. 2021;21(2):162–8.

    Article  CAS  PubMed  Google Scholar 

  39. Song W, et al. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med. 2020;24(22):12970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xi Y, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594–03.

  41. Cai MX, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 2016;149:1–9.

    Article  CAS  PubMed  Google Scholar 

  42. Shi X, Luo X, Xu X. Dimethylarginine dimethylaminohydrolase-1 contributes to exercise-induced cardiac angiogenesis in mice. Biosci Trends. 2020;14(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  43. Xia WH, et al. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell. 2012;11(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  44. Jayo-Montoya JA, et al. Chronotropic responses to exercise and recovery in myocardial infarction patients taking β-blockers following aerobic high-intensity interval training: an interfarct study. J Cardiopulm Rehabil Prev. 2022;42(1):22–7.

    Article  PubMed  Google Scholar 

  45. Khadanga S, et al. Optimizing training response for women in cardiac rehabilitation: a randomized clinical trial. JAMA Cardiol. 2022;7(2):215–8.

    Article  PubMed  Google Scholar 

  46. Yakut H, et al. Effect of home-based high-intensity interval training versus moderate-intensity continuous training in patients with myocardial infarction: a randomized controlled trial. Ir J Med Sci. 2022;191(6):2539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dor-Haim H, et al. Intermittent aerobic-resistance interval training versus continues aerobic training: improvement in cardiac electrophysiologic and anthropometric measures in male patients post myocadiac infarction, a randomized control trial. PLoS ONE. 2022;17(5):e0267888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eser P, et al. Acute and chronic effects of high-intensity interval and moderate-intensity continuous exercise on heart rate and its variability after recent myocardial infarction: a randomized controlled trial. Ann Phys Rehabil Med. 2022;65(1):101444.

    Article  CAS  PubMed  Google Scholar 

  49. Kollet DP, et al. Aerobic exercise, but not isometric handgrip exercise, improves endothelial function and arterial stiffness in patients with myocardial infarction undergoing coronary intervention: a randomized pilot study. BMC Cardiovasc Disord. 2021;21(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jiang M, et al. Effect analysis of kinetic energy progressive exercise in patients with acute myocardial infarction after percutaneous coronary intervention: a randomized trial. Ann Palliat Med. 2021;10(7):7823–31.

    Article  PubMed  Google Scholar 

  51. Grabara M, Nowak Z, Nowak A. Effects of Hatha yoga on cardiac hemodynamic parameters and physical capacity in cardiac rehabilitation patients. J Cardiopulm Rehabil Prev. 2020;40(4):263–7.

    Article  PubMed  Google Scholar 

  52. McGREGOR G, et al. Reverse left ventricular remodeling: effect of cardiac rehabilitation exercise training in myocardial infarction patients with preserved ejection fraction. Eur J Phys Rehabil Med. 2016;52(3):370–8.

    PubMed  Google Scholar 

  53. Giallauria F, et al. Effects of exercise-based cardiac rehabilitation on high mobility group box-1 levels after acute myocardial infarction: rationale and design. J Cardiovasc Med. 2009;10(8):659–63.

    Article  Google Scholar 

  54. Kubo N, et al. Exercise at ventilatory threshold aggravates left ventricular remodeling in patients with extensive anterior acute myocardial infarction. Am Heart J. 2004;147(1):113–20.

    Article  PubMed  Google Scholar 

  55. Chambers J. Aortic stenosis. BMJ. 2005;330(7495):801–2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yap SC, et al. Aortic stenosis at young adult age. Expert Rev Cardiovasc Ther. 2005;3(6):1087–98.

    Article  PubMed  Google Scholar 

  57. Zeppilli P, et al. Bicuspid aortic valve: an innocent finding or a potentially life-threatening anomaly whose complications may be elicited by sports activity? J Cardiovasc Med (Hagerstown). 2006;7(4):282–7.

    Article  PubMed  Google Scholar 

  58. Scharhag J, et al. Bicuspid aortic valve: evaluation of the ability to participate in competitive sports: case reports of two soccer players. Clin Res Cardiol. 2006;95(4):228–34.

    Article  PubMed  Google Scholar 

  59. Schultz RL, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50(2):410–6.

    Article  CAS  PubMed  Google Scholar 

  60. [Guidelines for cardiovascular rehabilitation and secondary prevention in China 2018 simplified edition]. Zhonghua Nei Ke Za Zhi. 2018;57(11):802–10.

  61. Ravassa S, et al. Biomarkers of cardiomyocyte injury and stress identify left atrial and left ventricular remodelling and dysfunction: a population-based study. Int J Cardiol. 2015;185:177–85.

    Article  PubMed  Google Scholar 

  62. Humeres C, Frangogiannis NG. fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci. 2019;4(3):449–67.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lim SL, et al. Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J. 2015;36(31):2050–60.

    Article  CAS  PubMed  Google Scholar 

  64. Huang H, Huang W. Regulation of endothelial progenitor cell functions in ischemic heart disease: New therapeutic targets for cardiac remodeling and repair. Front Cardiovasc Med. 2022;9:896782.

  65. Su SA, et al. Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget. 2017;8(15):25700-25712.

  66. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ponnusamy M, et al. Long Noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation. 2019;139(23):2668–84.

    Article  CAS  PubMed  Google Scholar 

  68. Liu X, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21(4):584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang J, et al. Excessive treadmill training produces different cardiac-related microRNA profiles in the left and right ventricles in mice. Int J Sports Med. 2022;43(3):219–29.

    Article  CAS  PubMed  Google Scholar 

  70. Mathiyalagan P, et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation. 2019;139(4):518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang T, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22(2):175–82.

    Article  PubMed  Google Scholar 

  72. Zhang X, et al. Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin. 2021;42(9):1390–400.

    Article  CAS  PubMed  Google Scholar 

  73. Hassaan PS, et al. Irisin vs. Treadmill exercise in post myocardial infarction cardiac rehabilitation in rats. ARCH MED RES. 2019;50(2):44–54.

    Article  CAS  PubMed  Google Scholar 

  74. Lee SE, et al. Three-dimensional cardiomyocytes structure revealed by diffusion tensor imaging and its validation using a tissue-clearing technique. Sci Rep. 2018;8(1):6640.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Eder RA, et al. Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity. Commun Biol. 2022;5(1):656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boström P, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072–83.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bezzerides VJ, et al. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight. 2016;1(9).

  78. Varga I, et al. The non-cardiomyocyte cells of the heart. Their possible roles in exercise-induced cardiac regeneration and remodeling. Adv Exp Med Biol. 2017;999:117–36.

    Article  PubMed  Google Scholar 

  79. Davis J, et al. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell. 2012;23(4):705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fernandes T, et al. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol. 2015;309(4):H543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Opstad TB, et al. MMP-9 and its regulators TIMP-1 and EMMPRIN in patients with acute ST-elevation myocardial infarction: a NORDISTEMI substudy. Cardiology. 2018;139(1):17–24.

    Article  PubMed  Google Scholar 

  82. Brianezi L, et al. Effects of Physical training on the myocardium of oxariectomized LDLr knockout mice: MMP 2/9, collagen I/III, inflammation and oxidative stress. Arq Bras Cardiol. 2020;114(1):100–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lighthouse JK, et al. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight. 2019;4(1).

  84. Cai Y, et al. Aerobic exercise prevents insulin resistance through the regulation of miR-492/resistin axis in aortic endothelium. J Cardiovasc Transl Res. 2018;11(6):450–8.

    Article  PubMed  Google Scholar 

  85. Donghui T, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res. 2019;123:86–91.

    Article  PubMed  Google Scholar 

  86. Ouchi N, et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283(47):32802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xi Y, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594–603.

    Article  PubMed  Google Scholar 

  88. Pourheydar B, et al. Exercise improves aging-related decreased angiogenesis through modulating VEGF-A, TSP-1 and p-NF-Ƙb protein levels in myocardiocytes. J Cardiovasc Thorac Res. 2020;12(2):129–35.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chen J, et al. The impact of cardiomotor rehabilitation on endothelial function in elderly patients with chronic heart failure. BMC cardiovasc disord. 2021;21(1):524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li WD, et al. LncRNA WTAPP1 promotes migration and angiogenesis of endothelial progenitor cells via MMP1 through MicroRNA 3120 and Akt/PI3K/autophagy pathways. Stem cells. 2018;36(12):1863–74.

    Article  CAS  PubMed  Google Scholar 

  91. Soori R, et al. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch Physiol Biochem. 2022;128(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  92. Jin K, et al. Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction. Small Methods. 2022;6(3):e2100752.

  93. Zhang QL, et al. GRGM-13 comprising 13 plant and animal products, inhibited oxidative stress induced apoptosis in retinal ganglion cells by inhibiting P2RX7/p38 MAPK signaling pathway. Biomed Pharmacother. 2018;101:494–500.

    Article  CAS  PubMed  Google Scholar 

  94. Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res. 2018;122(12):1722–40.

    Article  CAS  PubMed  Google Scholar 

  95. Afonina IS, et al. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861–9.

    Article  CAS  PubMed  Google Scholar 

  96. Stachon P, et al. P2X(7) deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation. 2017;135(25):2524–33.

    Article  CAS  PubMed  Google Scholar 

  97. Chen X, et al. Aerobic exercise ameliorates myocardial inflammation, fibrosis and apoptosis in high-fat-diet rats by inhibiting P2X7 purinergic receptors. Front Physiol. 2019;10:1286.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Peake JM, et al. Recovery of the immune system after exercise. J Appl Physiol (1985). 2017;122(5):1077–87.

    Article  CAS  PubMed  Google Scholar 

  99. Femminò S, et al. Extracellular vesicles and cardiovascular system: biomarkers and cardioprotective effectors. Vascul Pharmacol. 2020;135: 106790.

    Article  PubMed  Google Scholar 

  100. Bei Y, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol. 2017;112(4):38.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yin A, et al. Exercise-derived peptide protects against pathological cardiac remodeling. EBioMedicine. 2022;82: 104164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the China Postdoctoral Science Foundation (71th Batch-2022M711321), the Jining Medical University Research Fund for Academician Lin He New Medicine (JYHL2022), the Shandong Province Key Project of TCM Science and Technology (Z-2022081), and the Key research and development plan in Jining City (2022YXNS003).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The first draft of the manuscript was written by Haizhu Gao. Writing is supervised and guided by Xueying Chen and Lijun Gan. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xueying Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors report no potential conflicts of interest relevant to this study.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Li, Z., Gan, L. et al. The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-024-10498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-024-10498-7

Keywords

Navigation