Skip to main content
Log in

Cardiac Fibroblast Activation Induced by Oxygen–Glucose Deprivation Depends on the HIF-1α/miR-212-5p/KLF4 Pathway

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

It is widely accepted that miRNAs play an important role in the pathogenesis of myocardial fibrosis. This study aimed to identify a new pathway of miR-212-5p in the activation of human cardiac fibroblasts (HCFs) induced by oxygen–glucose deprivation (OGD). First, we found that KLF4 protein was markedly decreased in OGD-induced HCFs. Then, bioinformatics analysis and verification experiments were used to identify the existence of an interaction of KLF4 with miR-212-5p. Functional experiments indicated that OGD significantly upregulated the expression of hypoxia inducible factor-1 alpha (HIF-1α) in HCFs, which positively regulated miR-212-5p transcription by binding to its promoter. MiR-212-5p inhibited the expression of Krüppel-like factor 4 (KLF4) protein by binding to the 3’ untranslated coding regions (UTRs) of KLF4 mRNA. Inhibition of miR-212-5p effectively inhibited the activation of OGD-induced HCFs by upregulating KLF4 expression and inhibited cardiac fibrosis in vivo and in vitro.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OGD:

Oxygen and glucose deprivation

HIF-1α:

Hypoxia inducible factor-1 alpha

KLF4:

Krüppel-like factor 4

CFs:

Cardiac fibroblasts

Lv:

Lentivirus

LV:

Left ventricle

IVS:

Interventricular septal thickness

LVPW:

Left ventricle posterior wall thickness

References

  1. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197–210. https://doi.org/10.1016/S0140-6736(16)30677-8.

    Article  PubMed  Google Scholar 

  2. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362(23):2155–65. https://doi.org/10.1056/NEJMoa0908610.

    Article  CAS  PubMed  Google Scholar 

  3. Park S, Nguyen NB, Pezhouman A, Ardehali R. Cardiac fibrosis: potential therapeutic targets. Transl Res. 2019;209:121–37. https://doi.org/10.1016/j.trsl.2019.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65. https://doi.org/10.1038/nrcardio.2014.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117(3):568–75. https://doi.org/10.1172/JCI31044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007;170(6):1807–16. https://doi.org/10.2353/ajpath.2007.070112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract. 2017;133:124–30. https://doi.org/10.1016/j.diabres.2017.08.018.

    Article  CAS  PubMed  Google Scholar 

  8. Pichler M, Rainer PP, Schauer S, Hoefler G. Cardiac fibrosis in human transplanted hearts is mainly driven by cells of intracardiac origin. J Am Coll Cardiol. 2012;59(11):1008–16. https://doi.org/10.1016/j.jacc.2011.11.036.

    Article  PubMed  Google Scholar 

  9. Wu C, Liu B, Wang R, Li G. The regulation mechanisms and clinical application of microRNAs in myocardial infarction: a review of the recent 5 years. Front Cardiovasc Med. 2021;8:809580. https://doi.org/10.3389/fcvm.2021.809580.

    Article  CAS  PubMed  Google Scholar 

  10. Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078. https://doi.org/10.1038/ncomms2090.

    Article  CAS  PubMed  Google Scholar 

  11. Gupta SK, Garg A, Avramopoulos P, Engelhardt S, Streckfuss-Bomeke K, Batkai S, et al. miR-212/132 cluster modulation prevents doxorubicin-mediated atrophy and cardiotoxicity. Mol Ther. 2019;27(1):17–28. https://doi.org/10.1016/j.ymthe.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  13. Lu S, Jolly AJ, Strand KA, Dubner AM, Mutryn MF, Moulton KS, et al. Smooth muscle-derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis. JCI Insight. 2020;5(23). https://doi.org/10.1172/jci.insight.139445.

  14. Xu Y, Luo Y, Liang C, Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol. 2020;139:47–61. https://doi.org/10.1016/j.yjmcc.2019.12.013.

    Article  CAS  PubMed  Google Scholar 

  15. Farina FM, Hall IF, Serio S, Zani S, Climent M, Salvarani N, et al. miR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ Res. 2020;126(12):e120–35. https://doi.org/10.1161/CIRCRESAHA.120.316489.

    Article  CAS  PubMed  Google Scholar 

  16. Song HF, He S, Li SH, Wu J, Yin W, Shao Z, et al. Knock-out of microRNA 145 impairs cardiac fibroblast function and wound healing post-myocardial infarction. J Cell Mol Med. 2020;24(16):9409–19. https://doi.org/10.1111/jcmm.15597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, et al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS One. 2012;7(1):e29275. https://doi.org/10.1371/journal.pone.0029275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez A, Schelbert EB, Diez J, Butler J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol. 2018;71(15):1696–706. https://doi.org/10.1016/j.jacc.2018.02.021.

    Article  PubMed  Google Scholar 

  19. Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5(1):15. https://doi.org/10.1186/1755-1536-5-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma Y, Halade GV, Lindsey ML. Extracellular matrix and fibroblast communication following myocardial infarction. J Cardiovasc Transl Res. 2012;5(6):848–57. https://doi.org/10.1007/s12265-012-9398-z.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA. 2013;110(14):5588–93. https://doi.org/10.1073/pnas.1301019110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180(4):1340–55. https://doi.org/10.1016/j.ajpath.2012.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63(22):2335–45. https://doi.org/10.1016/j.jacc.2014.02.555.

    Article  PubMed  Google Scholar 

  24. da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008;118(15):1567–76. https://doi.org/10.1161/CIRCULATIONAHA.108.769984.

    Article  CAS  PubMed  Google Scholar 

  25. Mayer SC, Gilsbach R, Preissl S, Monroy Ordonez EB, Schnick T, Beetz N, et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ Res. 2015;117(7):622–33. https://doi.org/10.1161/CIRCRESAHA.115.306721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sarkozy M, Gaspar R, Zvara A, Kiscsatari L, Varga Z, Kovari B, et al. Selective heart irradiation induces cardiac overexpression of the pro-hypertrophic miR-212. Front Oncol. 2019;9:598. https://doi.org/10.3389/fonc.2019.00598.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Peng W, Fang M, Wu M, Wu M. MSCs-derived extracellular vesicles carrying miR-212-5p alleviate myocardial infarction-induced cardiac fibrosis via NLRC5/VEGF/TGF-beta1/SMAD axis. J Cardiovasc Transl Res. 2022;15(2):302–16. https://doi.org/10.1007/s12265-021-10156-2.

    Article  PubMed  Google Scholar 

  28. Parisi Q, Biondi-Zoccai GG, Abbate A, Santini D, Vasaturo F, Scarpa S, et al. Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction. Int J Cardiol. 2005;99(2):337–9. https://doi.org/10.1016/j.ijcard.2003.11.038.

    Article  PubMed  Google Scholar 

  29. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Wang Y, Liu Y, Wang N, Qi Y, Du J. Kruppel-like factor 4 transcriptionally regulates TGF-beta1 and contributes to cardiac myofibroblast differentiation. PLoS One. 2013;8(4):e63424. https://doi.org/10.1371/journal.pone.0063424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (Grant numbers 81570406, 81500219, and 81870330) and Central University Basic Science Foundation of China (Grant number 1191329724).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueyang Zheng, Gang Tian, Zuyi Yuan or Tao Chen.

Ethics declarations

Ethical Approval

No human studies were carried out by the authors for this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the Institutional Animal Care and Use Committee of Xi’an Jiaotong University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(TIF 2.05 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, C., Zheng, T. et al. Cardiac Fibroblast Activation Induced by Oxygen–Glucose Deprivation Depends on the HIF-1α/miR-212-5p/KLF4 Pathway. J. of Cardiovasc. Trans. Res. 16, 778–792 (2023). https://doi.org/10.1007/s12265-023-10360-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10360-2

Keywords

Navigation