Skip to main content
Log in

Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J Integr Bioinform 2019, 16: 20190027.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang SW, Liu Z, Shi ZS. Non-coding RNA in acute ischemic stroke: Mechanisms, biomarkers and therapeutic targets. Cell Transplant 2018, 27: 1763–1777.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019, 20: 1836–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinform 2009, 7: 147–154.

    Article  CAS  Google Scholar 

  5. Lee YS, Dutta A. microRNAs in cancer. Annu Rev Pathol 2009, 4: 199–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev 2016, 96: 1297–1325.

    Article  CAS  PubMed  Google Scholar 

  7. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: LncRNA localization and function. J Cell Biol 2021, 220: e202009045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ali T, Grote P. Beyond the RNA-dependent function of LncRNA genes. eLife 2020, 9: e60583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019, 52: 17–31.

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 2021, 22: 1706–1728.

    Article  CAS  PubMed  Google Scholar 

  11. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019, 20: 675–691.

    Article  CAS  PubMed  Google Scholar 

  12. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011, 12: 861–874.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu J, Fu H, Wu Y, Zheng X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 2013, 56: 876–885.

    Article  CAS  PubMed  Google Scholar 

  14. Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol 2020, 186: 101746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020, 21: 139–152.

    Article  CAS  PubMed  Google Scholar 

  16. Cramer KS, Rubel EW. Glial cell contributions to auditory brainstem development. Front Neural Circuits 2016, 10: 83.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ho MS. Microglia in Parkinson’s disease. Adv Exp Med Biol 2019, 1175: 335–353.

    Article  CAS  PubMed  Google Scholar 

  18. Hu L, Zhang S, Ooi K, Wu X, Wu J, Cai J, et al. Microglia-derived NLRP3 activation mediates the pressor effect of prorenin in the rostral ventrolateral medulla of stress-induced hypertensive rats. Neurosci Bull 2020, 36: 475–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simons M, Nave KA. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb Perspect Biol 2015, 8: a020479.

    Article  PubMed  Google Scholar 

  20. Giovannoni F, Quintana FJ. The role of astrocytes in CNS inflammation. Trends Immunol 2020, 41: 805–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 2018, 187: 31–44.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang Z, Chen J, Chen J, Lei Z, Chen H, Wu J, et al. Anti-inflammatory effects of paeoniflorin caused by regulation of the hif1a/miR-210/caspase1/GSDMD signaling pathway in astrocytes: A novel strategy for hypoxia-induced brain injury in rats. Immunopharmacol Immunotoxicol 2021, 43: 410–418.

    Article  CAS  PubMed  Google Scholar 

  23. Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: Implications for cerebral ischemic stroke. Autophagy 2018, 14: 1164–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao F, Qu Y, Wang H, Huang L, Zhu J, Li S, et al. The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Res 2017, 1671: 67–76.

    Article  CAS  PubMed  Google Scholar 

  25. Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 2017, 13: 1722–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao H, Wang X, Feng X, Li X, Pan L, Liu J, et al. Long non-coding RNA MEG3 regulates proliferation, apoptosis, and autophagy and is associated with prognosis in glioma. J Neurooncol 2018, 140: 281–288.

    Article  CAS  PubMed  Google Scholar 

  27. Li P, Li Y, Dai Y, Wang B, Li L, Jiang B, et al. The LncRNA H19/miR-1-3p/CCL2 axis modulates lipopolysaccharide (LPS) stimulation-induced normal human astrocyte proliferation and activation. Cytokine 2020, 131: 155106.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen LH, Ong W, Wang K, Wang M, Nizetic D, Chew SY. Effects of miR-219/miR-338 on microglia and astrocyte behaviors and astrocyte-oligodendrocyte precursor cell interactions. Neural Regen Res 2020, 15: 739–747.

    Article  CAS  PubMed  Google Scholar 

  29. Liu L, Liu L, Shi J, Tan M, Xiong J, Li X, et al. microRNA-34b mediates hippocampal astrocyte apoptosis in a rat model of recurrent seizures. BMC Neurosci 2016, 17: 56.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu M, Cheng X, Yan H, Chen J, Liu C, Chen Z. miR-135-5p alleviates bone cancer pain by regulating astrocyte-mediated neuroinflammation in spinal cord through JAK2/STAT3 signaling pathway. Mol Neurobiol 2021, 58: 4802–4815.

    Article  CAS  PubMed  Google Scholar 

  31. Karthikeyan A, Patnala R, Jadhav SP, Ling EA, Dheen ST. microRNAs: Key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem 2016, 23: 3528–3546.

    Article  CAS  PubMed  Google Scholar 

  32. Pogue AI, Cui JG, Li YY, Zhao Y, Culicchia F, Lukiw WJ. Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett 2010, 476: 18–22.

    Article  CAS  PubMed  Google Scholar 

  33. Kieran NW, Suresh R, Dorion MF, MacDonald A, Blain M, Wen D, et al. microRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes. J Neuroinflammation 2022, 19: 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, et al. Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 2014, 39: 1099–1107.

    Article  PubMed  Google Scholar 

  35. Li ZY, Long QF, Wang DY, Zhao HS, Jia SL, et al. miR-379-5p improved locomotor function recovery after spinal cord injury in rats by reducing endothelin 1 and inhibiting astrocytes expression. Eur Rev Med Pharmacol Sci 2019, 23: 9738–9745.

    PubMed  Google Scholar 

  36. Korotkov A, Puhakka N, Gupta SD, Vuokila N, Broekaart DWM, Anink JJ, et al. Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathol 2020, 30: 897–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, et al. Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnology 2020, 18: 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng L, Cheng W, Wang X, Yang Z, Zhou X, Pan C. Overexpression of microRNA-145 ameliorates astrocyte injury by targeting aquaporin 4 in cerebral ischemic stroke. Biomed Res Int 2017, 2017: 9530951.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu R, Wang W, Wang S, Xie W, Li H, Ning B. microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-β signaling. Aging 2018, 10: 1474–1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su Y, Chen Z, Du H, Liu R, Wang W, Li H, et al. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury. FASEB J 2019, 33: 10859–10871.

    Article  CAS  PubMed  Google Scholar 

  41. Mo JL, Liu Q, Kou ZW, Wu KW, Yang P, Chen XH, et al. microRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018, 66: 1346–1362.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guedes JR, Custódia CM, Silva RJ, de Almeida LP, Pedroso de Lima MC, Cardoso AL. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum Mol Genet 2014, 23: 6286–6301.

    Article  CAS  PubMed  Google Scholar 

  43. Zumkehr J, Rodriguez-Ortiz CJ, Medeiros R, Kitazawa M. Inflammatory cytokine, IL-1β, regulates glial glutamate transporter via microRNA-181a in vitro. J Alzheimers Dis 2018, 63: 965–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen TT, Kim YJ, Lai TT, Nguyen PT, Koh YH, Nguyen LTN, et al. PTEN-induced putative kinase 1 dysfunction accelerates synucleinopathy. J Parkinsons Dis 2022, 12: 1201–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi I, Woo JH, Jou I, Joe EH. PINK1 deficiency decreases expression levels of mir-326, mir-330, and mir-3099 during brain development and neural stem cell differentiation. Exp Neurobiol 2016, 25: 14–23.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Xie C, Song Y, Xiang W, Peng J, Han L, et al. miR-20a suppresses Treg differentiation by targeting Map3k9 in experimental autoimmune encephalomyelitis. J Transl Med 2021, 19: 223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Orefice NS, Guillemot-Legris O, Capasso R, Bottemanne P, Hantraye P, Caraglia M, et al. miRNA profile is altered in a modified EAE mouse model of multiple sclerosis featuring cortical lesions. eLife 2020, 9: e56916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu X, Zhou F, Yang Y, Wang W, Niu L, Zuo D, et al. miR-409-3p and miR-1896 co-operatively participate in IL-17-induced inflammatory cytokine production in astrocytes and pathogenesis of EAE mice via targeting SOCS3/STAT3 signaling. Glia 2019, 67: 101–112.

    Article  PubMed  Google Scholar 

  49. van Scheppingen J, Mills JD, Zimmer TS, Broekaart DWM, Iori V, Bongaarts A, et al. miR147b: A novel key regulator of interleukin 1 beta-mediated inflammation in human astrocytes. Glia 2018, 66: 1082–1097.

    Article  PubMed  Google Scholar 

  50. Korotkov A, Broekaart DWM, Banchaewa L, Pustjens B, van Scheppingen J, Anink JJ, et al. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 2020, 68: 60–75.

    Article  PubMed  Google Scholar 

  51. Wang H, Yao G, Li L, Ma Z, Chen J, Chen W. LncRNA-UCA1 inhibits the astrocyte activation in the temporal lobe epilepsy via regulating the JAK/STAT signaling pathway. J Cell Biochem 2020, 121: 4261–4270.

    Article  CAS  PubMed  Google Scholar 

  52. Gao W, Ning Y, Peng Y, Tang X, Zhong S, Zeng H. LncRNA NKILA relieves astrocyte inflammation and neuronal oxidative stress after cerebral ischemia/reperfusion by inhibiting the NF-κB pathway. Mol Immunol 2021, 139: 32–41.

    Article  CAS  PubMed  Google Scholar 

  53. Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, et al. Long non-coding RNAs and circular RNAs: Insights into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci 2021, 14: 745066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang ZS, Zhang JR. LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. Int J Biol Macromol 2018, 120: 66–72.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Wang J, Zhang Y, Wei J, Wu R, Cai H. Overexpression of long noncoding RNA Malat1 ameliorates traumatic brain injury induced brain edema by inhibiting AQP4 and the NF-κB/IL-6 pathway. J Cell Biochem 2019, 120: 17584–17592.

    Article  CAS  PubMed  Google Scholar 

  56. Duan R, Wang SY, Wei B, Deng Y, Fu XX, Gong PY, et al. Angiotensin-(1–7) analogue AVE0991 modulates astrocyte-mediated neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in a transgenic mouse model of Alzheimer’s disease. J Inflamm Res 2021, 14: 7007–7019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao T, Ding Y, Li M, Zhou C, Lin W. Silencing lncRNA PVT1 inhibits activation of astrocytes and increases BDNF expression in hippocampus tissues of rats with epilepsy by downregulating the Wnt signaling pathway. J Cell Physiol 2019: 2019.

  58. Yu Q, Zhao MW, Yang P. LncRNA UCA1 suppresses the inflammation via modulating miR-203-mediated regulation of MEF2C/NF-κB signaling pathway in epilepsy. Neurochem Res 2020, 45: 783–795.

    Article  CAS  PubMed  Google Scholar 

  59. Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB. Identifying and characterizing circRNA-protein interaction. Theranostics 2017, 7: 4183–4191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014, 15: 409.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Legnini I, di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 is a circular RNA that can Be translated and functions in myogenesis. Mol Cell 2017, 66: 22-37.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zuo L, Xie J, Liu Y, Leng S, Zhang Z, Yan F. Down-regulation of circular RNA CDC14A peripherally ameliorates brain injury in acute phase of ischemic stroke. J Neuroinflammation 2021, 18: 283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation 2020, 142: 556–574.

    Article  CAS  PubMed  Google Scholar 

  64. Yang B, Zang LE, Cui J, Wei L. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction. Stem Cell Res Ther 2021, 12: 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou D, Huang Z, Zhu X, Hong T, Zhao Y. Circular RNA 0025984 ameliorates ischemic stroke injury and protects astrocytes through miR-143-3p/TET1/ORP150 pathway. Mol Neurobiol 2021, 58: 5937–5953.

    Article  CAS  PubMed  Google Scholar 

  66. Chen W, Wang H, Zhu Z, Feng J, Chen L. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol Ther Nucleic Acids 2020, 22: 657–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen D, Guo Y, Qi L, Tang X, Liu Y, Yang X, et al. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging 2019, 11: 12002–12031.

    Article  CAS  Google Scholar 

  68. Leng L, Zhuang K, Liu Z, Huang C, Gao Y, Chen G, et al. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 2018, 100: 551-563.e7.

    Article  CAS  PubMed  Google Scholar 

  69. Huang R, Zhang Y, Bai Y, Han B, Ju M, Chen B, et al. N 6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psychiatry 2020, 88: 392–404.

    Article  CAS  PubMed  Google Scholar 

  70. Shao L, Jiang GT, Yang XL, Zeng ML, Cheng JJ, Kong S, et al. Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J 2021, 35: e21330.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang D, Cai G, Liu K, Zhuang Z, Jia K, Pei S, et al. Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1. Aging 2021, 13: 4079–4095.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 2015, 77: 75–99.

    Article  CAS  PubMed  Google Scholar 

  73. Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 2017, 18: 1801–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li B, Dasgupta C, Huang L, Meng X, Zhang L. MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell Mol Immunol 2020, 17: 976–991.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, et al. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 2013, 44: 1706–1713.

    Article  CAS  PubMed  Google Scholar 

  76. Deng Y, Chen D, Wang L, Gao F, Jin B, Lv H, et al. Silencing of long noncoding RNA nespas aggravates microglial cell death and neuroinflammation in ischemic stroke. Stroke 2019, 50: 1850–1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu S, Wang J, Jiang J, Song J, Zhu W, Zhang F, et al. TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 2020, 11: 693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cui SY, Zhang W, Cui ZM, Yi H, Xu DW, Liu W, et al. Knockdown of long non-coding RNA LEF1-AS1 attenuates apoptosis and inflammatory injury of microglia cells following spinal cord injury. J Orthop Surg Res 2021, 16: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Freilich RW, Woodbury ME, Ikezu T. Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 2013, 8: e79416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J. miR-377 regulates inflammation and angiogenesis in rats after cerebral ischemic injury. J Cell Biochem 2018, 119: 327–337.

    Article  CAS  PubMed  Google Scholar 

  81. Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: An ancient regulator of the immune system. Immunol Rev 2013, 253: 146–157.

    Article  PubMed  Google Scholar 

  82. Zhai X, Liu J, Ni A, Ye J. miR-497 promotes microglia activation and proinflammatory cytokines production in chronic unpredictable stress-induced depression via targeting FGF2. J Chem Neuroanat 2020, 110: 101872.

    Article  CAS  PubMed  Google Scholar 

  83. Lou D, Wang J, Wang X. miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation. Mol Cell Probes 2019, 48: 101470.

    Article  CAS  PubMed  Google Scholar 

  84. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, et al. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke 2017, 48: 2211–2221.

    Article  CAS  PubMed  Google Scholar 

  85. Shao M, Jin M, Xu S, Zheng C, Zhu W, Ma X, et al. Exosomes from long noncoding RNA-Gm37494-ADSCs repair spinal cord injury via shifting microglial M1/M2 polarization. Inflammation 2020, 43: 1536–1547.

    Article  CAS  PubMed  Google Scholar 

  86. Liu N, Sun H, Li X, Cao W, Peng A, Dong S, et al. Downregulation of lncRNA KCNQ1OT1 relieves traumatic brain injury induced neurological deficits via promoting “M2” microglia polarization. Brain Res Bull 2021, 171: 91–102.

    Article  CAS  PubMed  Google Scholar 

  87. Xiang W, Jiang L, Zhou Y, Li Z, Zhao Q, Wu T, et al. The lncRNA Ftx/miR-382-5p/Nrg1 axis improves the inflammation response of microglia and spinal cord injury repair. Neurochem Int 2021, 143: 104929.

    Article  CAS  PubMed  Google Scholar 

  88. Zhao Q, Lu F, Su Q, Liu Z, Xia X, Yan Z, et al. Knockdown of long noncoding RNA XIST mitigates the apoptosis and inflammatory injury of microglia cells after spinal cord injury through miR-27a/Smurf1 axis. Neurosci Lett 2020, 715: 134649.

    Article  CAS  PubMed  Google Scholar 

  89. Meng J, Ding T, Chen Y, Long T, Xu Q, Lian W, et al. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int Immunopharmacol 2021, 90: 107141.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang X, Zhu XL, Ji BY, Cao X, Yu LJ, Zhang Y, et al. LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke. J Neuroinflammation 2019, 16: 75.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cheng S, Zhang Y, Chen S, Zhou Y. LncRNA HOTAIR participates in microglia activation and inflammatory factor release by regulating the ubiquitination of MYD88 in traumatic brain injury. J Mol Neurosci 2021, 71: 169–177.

    Article  CAS  PubMed  Google Scholar 

  92. Zhou HJ, Wang LQ, Wang DB, Yu JB, Zhu Y, Xu QS, et al. Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-κB signaling pathway. Am J Physiol Cell Physiol 2018, 315: C52–C61.

    Article  CAS  PubMed  Google Scholar 

  93. Cao H, Han X, Jia Y, Zhang B. Inhibition of long non-coding RNA HOXA11-AS against neuroinflammation in Parkinson’s disease model via targeting miR-124-3p mediated FSTL1/NF-κB axis. Aging 2021, 13: 11455–11469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cai LJ, Tu L, Huang XM, Huang J, Qiu N, Xie GH, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 2020, 13: 130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Han CL, Ge M, Liu YP, Zhao XM, Wang KL, Chen N, et al. LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. J Neuroinflammation 2018, 15: 103.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Han CL, Liu YP, Guo CJ, Du TT, Jiang Y, Wang KL, et al. The lncRNA H19 binding to let-7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif 2020, 53: e12856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feng H, Gui Q, Zhu W, Wu G, Dong X, Shen M, et al. Long-noncoding RNA Peg13 alleviates epilepsy progression in mice via the miR-490-3p/Psmd11 axis to inactivate the Wnt/β-catenin pathway. Am J Transl Res 2020, 12: 7968–7981.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gu XH, Xu LJ, Zheng LL, Yang YJ, Tang ZY, Wu HJ, et al. Long non-codingRNA uc.80-overexpression promotesM2 polarization of microglias to ameliorate depression in rats. IUBMB Life 2020, 72: 2194–2203.

    Article  CAS  PubMed  Google Scholar 

  99. Li X, Kang J, Lv H, Liu R, Chen J, Zhang Y, et al. CircPrkcsh, a circular RNA, contributes to the polarization of microglia towards the M1 phenotype induced by spinal cord injury and acts via the JNK/p38 MAPK pathway. FASEB J 2021, 35: e22014.

    Article  CAS  PubMed  Google Scholar 

  100. Yang H, Tu Z, Yang D, Hu M, Zhou L, Li Q, et al. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett 2022, 769: 136389.

    Article  CAS  PubMed  Google Scholar 

  101. Tong D, Zhao Y, Tang Y, Ma J, Wang Z, Li C. Circ-Usp10 promotes microglial activation and induces neuronal death by targeting miRNA-152-5p/CD84. Bioengineered 2021, 12: 10812–10822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang Y, Du L, Bai Y, Han B, He C, Gong L, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 2020, 25: 1175–1190.

    Article  CAS  PubMed  Google Scholar 

  103. Gao X, Mian G, Liu J, Zhu Y, Cui Y, Shu S, et al. CircHivep2 contributes to microglia activation and inflammation via miR-181a-5p/SOCS2 signalling in mice with kainic acid-induced epileptic seizures. J Cell Mol Med 2020, 24: 12980–12993.

    Article  CAS  Google Scholar 

  104. Xin Y, Song X, Ge Q. Circular RNA SMEK1 promotes neuropathic pain in rats through targeting microRNA-216a-5p to mediate Thioredoxin Interacting Protein (TXNIP) expression. Bioengineered 2021, 12: 5540–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: A review. Prog Neurobiol 2012, 96: 322–339.

    Article  CAS  PubMed  Google Scholar 

  106. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science 2010, 330: 779–782.

    Article  CAS  PubMed  Google Scholar 

  107. Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in development, myelin generation and beyond. Cells 2019, 8: 1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. LoPresti P. Tau in oligodendrocytes takes neurons in sickness and in health. Int J Mol Sci 2018, 19: 2408.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Barateiro A, Brites D, Fernandes A. Oligodendrocyte development and myelination in neurodevelopment: Molecular mechanisms in health and disease. Curr Pharm Des 2016, 22: 656–679.

    Article  CAS  PubMed  Google Scholar 

  110. Katsel P, Roussos P, Fam P, Khan S, Tan W, Hirose T, et al. The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. Npj Schizophr 2019, 5: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 2010, 65: 597–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, et al. microRNA-mediated control of oligodendrocyte differentiation. Neuron 2010, 65: 612–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C, et al. miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev Cell 2017, 40: 566-582.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu XS, Chopp M, Pan WL, Wang XL, Fan BY, Zhang Y, et al. microRNA-146a promotes oligodendrogenesis in stroke. Mol Neurobiol 2017, 54: 227–237.

    Article  CAS  PubMed  Google Scholar 

  115. Nazari B, Namjoo Z, Moradi F, Kazemi M, Ebrahimi-Barough S, Sadroddiny E, et al. miR-219 overexpressing oligodendrocyte progenitor cells for treating compression spinal cord injury. Metab Brain Dis 2021, 36: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  116. Lei CJ, Chen W, Li MH, Xu Y, Pan QY, Zheng G, et al. miR-24 inhibits oligodendrocyte precursor cell differentiation after spinal injury by targeting adrenal medulla. Eur Rev Med Pharmacol Sci 2020, 24: 2865–2873.

    PubMed  Google Scholar 

  117. Cheng L, Wang C, Yao F, Li Z, Liu W, Jing J. microRNA-26b inhibits oligodendrocyte precursor cell differentiation by targeting adrenomedullin in spinal cord injury. J Cell Physiol 2020, 235: 2429–2440.

    Article  CAS  PubMed  Google Scholar 

  118. Buller B, Chopp M, Ueno Y, Zhang L, Zhang RL, Morris D, et al. Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation. Glia 2012, 60: 1906–1914.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dutta R, Trapp BD. Relapsing and progressive forms of multiple sclerosis: Insights from pathology. Curr Opin Neurol 2014, 27: 271–278.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhang J, Zhang ZG, Lu M, Zhang Y, Shang X, Chopp M. miR-146a promotes oligodendrocyte progenitor cell differentiation and enhances remyelination in a model of experimental autoimmune encephalomyelitis. Neurobiol Dis 2019, 125: 154–162.

    Article  CAS  PubMed  Google Scholar 

  121. Hu B, Hu ZL, Zeng QM, Xiao B, Yang H. miR-19b functions as a potential protector in experimental autoimmune encephalomyelitis. Curr Mol Med 2018, 18: 312–321.

    Article  CAS  PubMed  Google Scholar 

  122. Tripathi A, Volsko C, Garcia JP, Agirre E, Allan KC, Tesar PJ, et al. Oligodendrocyte intrinsic miR-27a controls myelination and remyelination. Cell Rep 2019, 29: 904-919.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu S, Ren C, Qu X, Wu X, Dong F, Chand YK, et al. miR-219 attenuates demyelination in cuprizone-induced demyelinated mice by regulating monocarboxylate transporter 1. Eur J Neurosci 2017, 45: 249–259.

    Article  PubMed  Google Scholar 

  124. Lecca D, Marangon D, Coppolino GT, Méndez AM, Finardi A, Costa GD, et al. miR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci Rep 2016, 6: 34503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kornfeld SF, Cummings SE, Fathi S, Bonin SR, Kothary R. MiRNA-145-5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor. J Cell Physiol 2021, 236: 997–1012.

    Article  CAS  PubMed  Google Scholar 

  126. Adusumilli L, Facchinello N, Teh C, Busolin G, Le MT, Yang H, et al. miR-7 controls the dopaminergic/oligodendroglial fate through Wnt/β-catenin signaling regulation. Cells 2020, 9: 711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Miguel-Hidalgo JJ, Hall KO, Bonner H, Roller AM, Syed M, Park CJ, et al. microRNA-21: Expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism. Prog Neuro Psychopharmacol Biol Psychiatry 2017, 79: 503–514.

    Article  CAS  Google Scholar 

  128. Li X, Zhang W, Xiao M, Wang F, Zhou P, Yang J, et al. microRNA-146b-5p protects oligodendrocyte precursor cells from oxygen/glucose deprivation-induced injury through regulating Keap1/Nrf2 signaling via targeting bromodomain-containing protein 4. Biochem Biophys Res Commun 2019, 513: 875–882.

    Article  CAS  PubMed  Google Scholar 

  129. Dong X, Chen K, Cuevas-Diaz Duran R, You Y, Sloan SA, Zhang Y, et al. Comprehensive identification of long non-coding RNAs in purified cell types from the brain reveals functional LncRNA in OPC fate determination. PLoS Genet 2015, 11: e1005669.

    Article  PubMed  PubMed Central  Google Scholar 

  130. He D, Wang J, Lu Y, Deng Y, Zhao C, Xu L, et al. lncRNA functional networks in oligodendrocytes reveal stage-specific myelination control by an lncOL1/Suz12 complex in the CNS. Neuron 2017, 93: 362–378.

    Article  CAS  PubMed  Google Scholar 

  131. Li Y, Wang F, Teng P, Ku L, Chen L, Feng Y, et al. Accurate identification of circRNA landscape and complexity reveals their pivotal roles in human oligodendroglia differentiation. Genome Biol 2022, 23: 48.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by grants from the Science and Technology innovation 2030–Major Project of the Ministry of Science and Technology of China (2021ZD0202904/2021ZD0202900), the National Science Fund Distinguished Young Scholars (82025033), the National Natural Science Foundation of China (82230115, 82273914, 81903591), ZhiShan Scholar Program of Southeast University (2242022R40059) and the Jiangsu Provincial Key Laboratory of Critical Care Medicine (JSKLCCM–2022–02–008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghong Yao.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 138 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Ren, H., Bian, L. et al. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci. Bull. 39, 440–452 (2023). https://doi.org/10.1007/s12264-022-00950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00950-6

Keywords

Navigation