Skip to main content
Log in

Metabolic engineering of erythritol production from glycerol by Yarrowia lipolytica

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Erythritol as a four-carbon polyol has been widely used in food, pharmaceutical and daily chemical industries with characteristics of low caloric value and high chemical stability. Here, a system metabolic engineering strategy was used to increase the yield of erythritol from glycerol in Yarrowia lipolytica by enhancing the substrate transformation and restricting the by-product synthesis. Specifically, we determined that over-expression of a newly identified erythrose reductase YPR1 was able to improve the erythritol production as same as the well-known erythrose reductase ER27. Instead of its up-regulation, knockout of erythrose reductase ER10 was effective to improve erythritol synthesis. Moreover, both over-expression of YPR1 and deletion of ER10 significantly accelerated the glycerol utilization in response to high osmotic stress. To further decrease the by-product accumulation, a restriction and recycling strategy was implemented by knockout of mannitol dehydrogenase MDH2 and enhancement of arabitol dehydrogenase ADH1 and fructokinase HXK1. The engineered strain YL13 produced a titer of 25 g/L erythritol and less than 0.5 g/L mannitol and arabitol. By over-expression of transketolase TKL1, the final strain YL14 produced 28.5 g/L erythritol and none of mannitol and arabitol. This study provides a new idea for reducing the production of by-products and improving the glycerol conversion to erythritol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. F Carly P Fickers 2018 Erythritol production by yeasts: a snapshot of current knowledge Yeast 35 455 463 https://doi.org/10.1002/yea.3306

    Article  CAS  PubMed  Google Scholar 

  2. O Ibrahim 2021 Erythritol chemical structure, biosynthesis pathways, properties, applications, and production Int J Microbiol Biotechnol 6 59 70 https://doi.org/10.11648/j.ijmb.20210603.11

    Article  Google Scholar 

  3. K Regnat RL Mach AR Mach-Aigner 2018 Erythritol as sweetener-wherefrom and whereto? Appl Microbiol Biotechnol 102 587 595 https://doi.org/10.1007/s00253-017-8654-1

    Article  CAS  PubMed  Google Scholar 

  4. G Livesey 2003 Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties Nutr Res Rev 16 163 191 https://doi.org/10.1079/NRR200371

    Article  CAS  PubMed  Google Scholar 

  5. E Hashino M Kuboniwa SA Alghamdi 2013 Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis Mol Oral Microbiol 28 435 451 https://doi.org/10.1111/omi.12037

    Article  CAS  PubMed  Google Scholar 

  6. X Li J Zhang B Fu 2020 Erythritol impregnated within surface-roughened hydrophilic metal foam for medium-temperature solar-thermal energy harvesting Energy Convers Manag 222 113241 https://doi.org/10.1016/j.enconman.2020.113241

    Article  Google Scholar 

  7. KM Baudier SD Kaschock-Marenda N Patel 2014 Erythritol, a non-nutritive sugar alcohol sweetener and the main component of Truvia®, is a palatable ingested insecticide PLoS ONE 9 e98949 https://doi.org/10.1371/journal.pone.0098949

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. XF Shao C Wang YJ Yang 2018 Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature latent heat storage. (I): non-isothermal melting and crystallization behaviors Energy 160 1078 1090 https://doi.org/10.1016/j.energy.2018.07.081

    Article  CAS  Google Scholar 

  9. V Stejskal T Vendl R Aulicky 2021 Synthetic and natural insecticides: gas, liquid, gel and solid formulations for stored-product and food-industry pest control Insects 12 590 https://doi.org/10.3390/insects12070590

    Article  PubMed  PubMed Central  Google Scholar 

  10. JK Lee SJ Ha SY Kim 2001 Increased erythritol production in Torula sp. with inositol and phytic acid Biotechnol Lett 23 497 500 https://doi.org/10.1023/A:1010386500326

    Article  CAS  Google Scholar 

  11. GR Ghezelbash I Nahvi A Malekpour 2014 Erythritol production with minimum by-product using Candida magnoliae mutant Prikl Biokhim Mikrobiol 50 324 328

    CAS  PubMed  Google Scholar 

  12. C Suwanapetch W Vanichsriratana 2022 Media optimization for erythritol production by Moniliella sp. BCC25224 Sugar Tech 25 257 261 https://doi.org/10.1007/s12355-022-01178-4

    Article  CAS  Google Scholar 

  13. DJ Davis C Burlak NP Money 2000 Osmotic pressure of fungal compatible osmolytes Mycol Res 104 800 804 https://doi.org/10.1017/S0953756299002087

    Article  CAS  Google Scholar 

  14. A Rywińska P Juszczyk M Wojtatowicz 2013 Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications Biomass Bioenergy 48 148 166 https://doi.org/10.1016/j.biombioe.2012.11.021

    Article  CAS  Google Scholar 

  15. Y Nakagawa T Kasumi J Ogihara 2020 Erythritol: another C4 platform chemical in biomass refinery ACS Omega 5 2520 2530 https://doi.org/10.1021/acsomega.9b04046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. W Rymowicz A Rywińska M Marcinkiewicz 2009 High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica Biotechnol Lett 31 377 380 https://doi.org/10.1007/s10529-008-9884-1

    Article  CAS  PubMed  Google Scholar 

  17. A Mirończuk A Rywińska W Rymowicz 2013 High-level production of erythritol by Yarrowia lipolytica MK1 from glycerol Yeast 30 S1 S132

    Google Scholar 

  18. L Tomaszewska A Rywinska W Rymowicz 2014 High selectivity of erythritol production from glycerol by Yarrowia lipolytica Biomass Bioenergy 64 309 320 https://doi.org/10.1016/j.biombioe.2014.03.005

    Article  CAS  Google Scholar 

  19. AM Mirończuk A Biegalska A Dobrowolski 2017 Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica Biotechnol Biofuels 10 77 https://doi.org/10.1186/s13068-017-0772-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L Tomaszewska W Rymowicz A Rywińska 2014 Mineral supplementation increases erythrose reductase activity in erythritol biosynthesis from glycerol by Yarrowia lipolytica Appl Biochem Biotechnol 172 3069 3078 https://doi.org/10.1007/s12010-014-0745-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. JK Lee BS Koo SY Kim 2002 Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina Appl Environ Microbiol 68 4534 4538 https://doi.org/10.1128/AEM.68.9.4534-4538.2002

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. JK Lee SJ Ha SY Kim 2000 Increased erythritol production in Torula sp. by Mn2+ and Cu2+ Biotechnol Lett 22 983 986 https://doi.org/10.1023/A:1005672801826

    Article  CAS  Google Scholar 

  23. GR Ghezelbash I Nahvi R Emamzadeh 2014 Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49 Curr Microbiol 69 149 157 https://doi.org/10.1007/s00284-014-0562-3

    Article  CAS  PubMed  Google Scholar 

  24. M Szczepańczyk DA Rzechonek A Dobrowolski 2021 The overexpression of YALI0B07117g results in enhanced erythritol synthesis from glycerol by the yeast Yarrowia lipolytica Molecules 26 7549 https://doi.org/10.3390/molecules26247549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T Janek A Dobrowolski A Biegalska 2017 Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis Microb Cell Fact 16 118 https://doi.org/10.1186/s12934-017-0733-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. H Cheng S Wang M Bilal 2018 Identification, characterization of two NADPH-dependent erythrose reductases in the yeast Yarrowia lipolytica and improvement of erythritol productivity using metabolic engineering Microb Cell Fact 17 133 https://doi.org/10.1186/s12934-018-0982-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. F Carly M Vandermies S Telek 2017 Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering Metab Eng 42 19 24 https://doi.org/10.1016/j.ymben.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  28. S Yang X Pan Q Wang 2022 Enhancing erythritol production from crude glycerol in a wild-type Yarrowia lipolytica by metabolic engineering Front Microbiol 13 1054243 https://doi.org/10.3389/fmicb.2022.1054243

    Article  PubMed  PubMed Central  Google Scholar 

  29. M Rakicka A Biegalska W Rymowicz 2017 Polyol production from waste materials by genetically modified Yarrowia lipolytica Bioresour Technol 243 393 399 https://doi.org/10.1016/j.biortech.2017.06.137

    Article  CAS  PubMed  Google Scholar 

  30. F Carly H Gamboa-Melendez M Vandermies 2017 Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica Appl Microbiol Biotechnol 101 6587 6596 https://doi.org/10.1007/s00253-017-8361-y

    Article  CAS  PubMed  Google Scholar 

  31. F Carly S Steels S Telek 2018 Identification and characterization of EYD1, encoding an erythritol dehydrogenase in Yarrowia lipolytica and its application to bioconvert erythritol into erythrulose Bioresour Technol 247 963 969 https://doi.org/10.1016/j.biortech.2017.09.168

    Article  CAS  PubMed  Google Scholar 

  32. N Wang P Chi Y Zou 2020 Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity Biotechnol Biofuels 13 176 https://doi.org/10.1186/s13068-020-01815-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. P Liang J Li Q Wang 2023 Enhancing the thermotolerance and erythritol production of Yarrowia lipolytica by introducing heat-resistant devices Front Bioeng Biotechnol 11 1108653 https://doi.org/10.3389/fbioe.2023.1108653

    Article  PubMed  PubMed Central  Google Scholar 

  34. X Qiu Y Gu G Du 2021 Conferring thermotolerant phenotype to wild-type Yarrowia lipolytica improves cell growth and erythritol production Biotechnol Bioeng 118 3117 3127 https://doi.org/10.1002/bit.27835

    Article  CAS  PubMed  Google Scholar 

  35. JM Nicaud 2012 Yarrowia lipolytica Yeast 29 409 418 https://doi.org/10.1002/yea.2921

    Article  CAS  PubMed  Google Scholar 

  36. P Fickers MT Dall Le C Gaillardin 2003 New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica J Microbiol Methods 55 727 737 https://doi.org/10.1016/j.mimet.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  37. PM Niang A Arguelles-Arias S Steels 2020 In Yarrowia lipolytica erythritol catabolism ends with erythrose phosphate Cell Biol Int 44 651 660 https://doi.org/10.1002/cbin.11265

    Article  CAS  PubMed  Google Scholar 

  38. M Workman P Holt J Thykaer 2013 Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations AMB Express 3 58 https://doi.org/10.1186/2191-0855-3-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. LV Silva da MAZ Coelho PFF Amaral 2018 A novel osmotic pressure strategy to improve erythritol production by Yarrowia lipolytica from glycerol Bioprocess Biosyst Eng 41 1883 1886 https://doi.org/10.1007/s00449-018-2001-5

    Article  CAS  PubMed  Google Scholar 

  40. L Tomaszewska M Rakicka W Rymowicz 2014 A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells FEMS Yeast Res 14 966 976 https://doi.org/10.1111/1567-1364.12184

    Article  CAS  PubMed  Google Scholar 

  41. S Ryu CT Trinh 2018 Understanding functional roles of native pentose-specific transporters for activating dormant pentose metabolism in Yarrowia lipolytica Appl Environ Microbiol 84 e02146 e2217 https://doi.org/10.1128/AEM.02146-17

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  42. T Dulermo Z Lazar R Dulermo 2015 Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis Biochim Biophys Acta 1851 1107 1117 https://doi.org/10.1016/j.bbalip.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  43. P Hapeta P Szczepańska T Witkowski 2021 The role of hexokinase and hexose transporters in preferential use of glucose over fructose and downstream metabolic pathways in the yeast Yarrowia lipolytica Int J Mol Sci 22 9282 https://doi.org/10.3390/ijms22179282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Fund for Young Scholars (32001035), the National Key R&D Program of China (2017YFE0115600, 2019YFA0904302) and the 111 Project (B18022).

Author information

Authors and Affiliations

Authors

Contributions

Ya-Ting Wang and Ling-Xuan Zhao designed and carried out the experiments to construct engineered strains. Liu-Jing Wei, Jun Chen and Zhijie Liu designed and carried out the fermentation. Feng Liu and Qiang Hua drafted the work and revised. Ya-Ting Wang, Ling-Xuan Zhao, Liu-Jing Wei, Jun Chen, Zhijie Liu and Feng Liu, Qiang Hua contributed to final approval of the version to be published.

Corresponding author

Correspondence to Qiang Hua.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Human or animal rights

No human or animal subjects were involved in the study so there was no need for any ethical approval or consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YT., Zhao, LX., Wei, LJ. et al. Metabolic engineering of erythritol production from glycerol by Yarrowia lipolytica. Biotechnol Bioproc E 29, 119–127 (2024). https://doi.org/10.1007/s12257-024-00005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-024-00005-9

Keywords

Navigation