Skip to main content
Log in

Study on a Low-temperature Cellulose-degrading Strain: Fermentation Optimization, Straw Degradation, and the Effect of Fermentation Broth on Seed Growth

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The biodegradation of straw by cellulose-degrading strains plays an important role in the disposal of agricultural waste. In this study, a Penicillium sp. strain JiTF01 that could degrade cellulose was isolated at the low temperature (10°C), and its fermentation conditions were optimized by response surface method. Strain JiTF01 was applied to degrade rice straw at 10°C. It was found that the straw degradation ratio could reach to 46.53% on the 25th day of culture with the enzyme activity of 44.30 U/mL under optimized fermentation conditions. In addition, given that strain JiTF01 showed excellent acid resistance and the cellulase produced by strain JiTF01 exhibited higher enzymatic activity and stability under acidic conditions, the uninterrupted integration process of acid pretreatment and acid fermentation of straw was then performed. The results showed that the degradation ratio of 53.61% was observed after 25 days of the fermentation at pH 3, which increased by 7.08% than that under optimized conditions. Besides, the effect of straw fermentation broth on the growth of rice seed was also investigated, and the 10−5 and 10−6 diluted fermentation broth was found that could significantly promote the growth of rice seedlings and enhance the germination rate of rice seeds under the salt stress of 100 and 200 mmol/L. The conclusions found in this article might have important implications for straw recycling in cold regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, G., T. Yin, Z. Lu, S. Y. B. Boboua, J. Li, and W. Zhou (2020) Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. Bioresour. Technol. 304: 123064.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, D., Y. Luo, S. Chu, Y. Zhi, B. Wang, and P. Zhou (2016) Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency. Prep. Biochem. Biotechnol. 46: 575–585.

    Article  CAS  PubMed  Google Scholar 

  3. Soares, F. L., Jr., I. S. Melo, A. C. Dias, and F. D. Andreote (2012) Cellulolytic bacteria from soils in harsh environments. World J. Microbiol. Biotechnol. 28: 2195–2203.

    Article  CAS  PubMed  Google Scholar 

  4. Li, D., L. Feng, K. Liu, Y. Cheng, N. Hou, and C. Li (2016) Optimization of cold-active CMCase production by psychrotrophic Sphingomonas sp. FLX-7 from the cold region of China. Cellulose (Lond.) 23: 1335–1347.

    Article  CAS  Google Scholar 

  5. Zhang, S., D. Shan, X. Liu, and M. Sun (2018) Cellulose-degrading strains: their screening and application to corn straw in low-temperature environments. Pol. J. Environ. Stud. 27: 2349–2355.

    Article  CAS  Google Scholar 

  6. Rastogi, G., G. L. Muppidi, R. N. Gurram, A. Adhikari, K. M. Bischoff, S. R. Hughes, W. A. Apel, S. S. Bang, D. J. Dixon, and R. K. Sani (2009) Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J. Ind. Microbiol. Biotechnol. 36: 585–598.

    Article  CAS  PubMed  Google Scholar 

  7. Legodi, L. M., D. La Grange, E. L. J. van Rensburg, and I. Ncube (2019) Isolation of cellulose degrading fungi from decaying banana pseudostem and Strelitzia alba. Enzyme Res. 2019: 1390890.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Steiner, E. and R. Margesin (2020) Production and partial characterization of a crude cold-active cellulase (CMCase) from Bacillus mycoides AR20-61 isolated from an Alpine forest site. Ann. Microbiol. 70: 67.

    Article  CAS  Google Scholar 

  9. Gong, X., H. Zou, C. Qian, Y. Yu, Y. Hao, L. Li, Q. Wang, Y. Jiang, and J. Ma (2020) Construction of in situ degradation bacteria of corn straw and analysis of its degradation efficiency. Ann. Microbiol. 70: 62.

    Article  CAS  Google Scholar 

  10. Peng, J., A. E.-F. Abomohra, M. Elsayed, X. Zhang, Q. Fan, and P. Ai (2019) Compositional changes of rice straw fibers after pretreatment with diluted acetic acid: towards enhanced biomethane production. J. Clean. Prod. 230: 775–782.

    Article  CAS  Google Scholar 

  11. Montoya-Rosales, J. J., M. Peces, L. M. González-Rodríguez, F. Alatriste-Mondragón, and D. K. Villa-Gómez (2020) A broad overview comparing a fungal, thermal and acid pre-treatment of bean straw in terms of substrate and anaerobic digestion effect. Biomass Bioenergy 142: 105775.

    Article  CAS  Google Scholar 

  12. Bhutto, A. W., K. Qureshi, K. Harijan, R. Abro, T. Abbas, A. A. Bazmi, S. Karim, and G. Yu (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy (Oxf.) 122: 724–745.

    Article  CAS  Google Scholar 

  13. Ursachi, V.-F. and G. Gutt (2020) Production of cellulosic ethanol from enzymatically hydrolysed wheat straws. Appl. Sci. (Basel) 10: 7638.

    Article  CAS  Google Scholar 

  14. Sun, S., Y. Zhang, K. Liu, X. Chen, C. Jiang, M. Huang, H. Zang, and C. Li (2020) Insight into biodegradation of cellulose by psychrotrophic bacterium Pseudomonas sp. LKR-1 from the cold region of China: optimization of cold-active cellulase production and the associated degradation pathways. Cellulose (Lond.) 27: 315–333.

    Article  CAS  Google Scholar 

  15. Teather, R. M. and P. J. Wood (1982) Use of Congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777–780.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kumar, S., M. Nei, J. Dudley, and K. Tamura (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9: 299–306.

    Article  CAS  PubMed  Google Scholar 

  17. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  18. Guezzane, C. E., H. E. Moudden, H. Harhar, I. Warad, A. Bellaouchou, A. Guenbour, A. Zarrouk, and M. Tabyaoui (2021) Optimization of roasting conditions on the bioactive compounds and their antioxidant power from Opuntia fiscus-Indica seeds using response surface methodology (RSM). Biointerface Res. Appl. Chem. 11: 10510–10532.

    CAS  Google Scholar 

  19. Kumar, S., V. Kumar, and P. Gautam (2021) Response surface optimization and impact of immobilized enzymes naringianse and tannase on the quality parameters of Citrus maxima juice. Biointerface Res. Appl. Chem. 11: 11535–11552.

    CAS  Google Scholar 

  20. Ji, J., D. Yuan, C. Jin, G. Wang, X. Li, and C. Guan (2020) Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiol. Plant. 42: 42.

    Article  CAS  Google Scholar 

  21. Zhao, S. S., Y. Y. Zhang, W. Yan, L. L. Cao, Y. Xiao, and Y. H. Ye (2017) Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol. Lett. 364: https://doi.org/10.1093/femsle/fnw287.

  22. Jiao, R., S. Munir, P. He, H. Yang, Y. Wu, J. Wang, P. He, Y. Cai, G. Wang, and Y. He (2020) Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion. Biol. Control 143: 104160.

    Article  CAS  Google Scholar 

  23. Anguiano Cabello, J. C., A. Flores Olivas, V. Olalde Portugal, R. Arredondo Valdés, and E. I. Laredo Alcalá (2019) Evaluation of Bacillus subtilis as promoters of plant growth. Rev. Bio Cienc. 6: e418.

    Google Scholar 

  24. Jarvinen, K. T., E. S. Melin, and J. A. Puhakka (1994) High-rate bioremediation of chlorophenol-contaminated groundwater at low temperatures. Environ. Sci. Technol. 28: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, G., Z. Lu, J. Li, S. Ai, and Y. Sun (2020) Screening and performance of L-14, a novel, highly efficient and low temperature-resistant cellulose-degrading strain. Int. J. Agric. Biol. Eng. 13: 247–254.

    Google Scholar 

  26. Salomão, G. S. B., J. C. Agnezi, L. B. Paulino, L. B. Hencker, T. S. de Lira, P. W. Tardioli, and L. M. Pinotti (2019) Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatal. Agric. Biotechnol. 17: 1–6.

    Article  Google Scholar 

  27. Silva-Mendoza, J., A. Gómez-Treviño, U. López-Chuken, E. A. Blanco-Gámez, L. Chávez-Guerrero, and M. E. Cantú-Cárdenas (2020) Agave leaves as a substrate for the production of cellulases by Penicillium sp. and the obtainment of reducing sugars. J. Chem. 2020: 6092165.

    Article  CAS  Google Scholar 

  28. Zheng, Z., Q. Xu, P. Liu, F. Zhou, and J. Ouyang (2018) Enhanced inulin saccharification by self-produced inulinase from a newly isolated Penicillium sp. and its application in D-Lactic acid production. Appl. Biochem. Biotechnol. 186: 122–131.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, Y.-L., Z. Li, X.-N. Liu, P.-P. Wang, and J. Zhang (2010) Screening and identification of a cold-adapted cellulase-producing bacteria. Wei Sheng Wu Xue Tong Bao 37: 637–644.

    CAS  Google Scholar 

  30. Wang, C. M., C. L. Shyu, S. P. Ho, and S. H. Chiou (2008) Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett. Appl. Microbiol. 47: 46–53.

    Article  CAS  PubMed  Google Scholar 

  31. Prasanna, H. N., G. Ramanjaneyulu, and B. Rajasekhar Reddy (2016) Optimization of cellulase production by Penicillium sp. 3 Biotech. 6: 162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bai, H., H. Zi, Y. Huang, M. Han, M. Irfan, N. Liu, J. Yang, H. Wang, and X. Han (2017) Catalytic properties of carboxymethyl cellulase produced from newly isolated novel fungus Penicillium ochrochloron ZH1 in submerged fermentation. Catal. Lett. 147: 2013–2022.

    Article  CAS  Google Scholar 

  33. Song, J., J. Gu, Y. Zhai, W. Wu, H. Wang, Z. Ruan, Y. Shi, and Y Yan (2013) Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresour. Technol. 140: 243–248.

    Article  CAS  PubMed  Google Scholar 

  34. Ruan, Z., S. Zhou, S. Jiang, L. Sun, Y. Zhai, Y. Wang, C. Chen, and B. Zhao (2013) Isolation and characterization of a novel cinosulfuron degrading Kurthia sp. from a methanogenic microbial consortium. Bioresour. Technol. 147: 477–483.

    Article  CAS  PubMed  Google Scholar 

  35. Li, N., Y. Han, X. Jin, L. Wang, H. Pan, H. Rui, J. Yu, L. Yang, B. Han, and G. Qi (2019) Isolation, Identification and characteristics analysis of a straw-cellulose degradation strain adaptable for low-temperature. Yu Mi Ke Xue. 27: 159–163.

    Google Scholar 

  36. Qinggeer, J.-L. Gao, X.-F. Yu, B.-L. Zhang, Z.-G. Wang, B. Naoganchaolu, S.-P. Hu, J.-Y. Sun, M. Xie, and Z. Wang (2016) Screening of a microbial consortium with efficient corn stover degradation ability at low temperature. J. Integr. Agric. 15: 2369–2379.

    Article  CAS  Google Scholar 

  37. Zhang, X., Qinggeer, J. Gao, X. Yu, S. Hu, B. Zhang, S. Han, and B. Feng (2021) Screening and composition of the microbial consortium with corn straw decomposition under low temperature. Nong Ye Huan Jing Ke Xue Xue Bao. 40: 1565–1574.

    Google Scholar 

  38. Sa, R., J. Gao, X. Yu, and S. Hu (2013) Screening of low temperature maize stalk decomposition microorganism. Zhongguo Nong Ye Ke Xue. 46: 4082–4090.

    Google Scholar 

  39. Liang, Y.-L., Z. Zhang, M. Wu, Y. Wu, and J.-X. Feng (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed. Res. Int. 2014: 512497.

    PubMed Central  PubMed  Google Scholar 

  40. Bai, H., H. Wang, J. Sun, M. Irfan, M. Han, Y. Huang, X. Han, and Q. Yang (2013) Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. EXCLI J. 12: 528–540.

    PubMed Central  PubMed  Google Scholar 

  41. Peñalva, M. A. and H. N. Arst Jr. (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 66: 426–446.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Häkkinen, M., D. Sivasiddarthan, N. Aro, M. Saloheimo, and T. M. Pakula (2015) The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb. Cell Fact. 14: 63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Espinoza-Acosta, J. L., P. I. Torres-Chávez, E. Carvajal-Millán, B. Ramirez-Wong, L. A. Bello-Pérez, and B. Montaño-Leyva (2014) Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. Bioresources. 9: 3660–3687.

    Article  Google Scholar 

  44. Feng, X., F. Li, Y. Xu, L. Li, F. He, Y. Feng, Q. Yuan, and D. Liu (2021) Screening of cellulase producing strains from rotten wood in Xinjiang cold area and analysis of their characteristics of enzyme production at low temperature. Zhejiang Nong Ye Xue Bao. 33: 1468–1476.

    Google Scholar 

  45. Yang, B. and C. E. Wyman (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel. Bioprod. Biorefin. 2: 26–40.

    Article  CAS  Google Scholar 

  46. Dziekońska-Kubczak, U., J. Berłowska, P. Dziugan, P. Patelski, K. Pielech-Przybylska, and M. Balcerek (2018) Nitric acid pretreatment of Jerusalem artichoke stalks for enzymatic saccharification and bioethanol production. Energies (Basel) 11: 2153.

    Article  CAS  Google Scholar 

  47. Rattanaporn, K., P. Tantayotai, T. Phusantisampan, P. Pornwongthong, and M. Sriariyanun (2018) Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production. Bioprocess Biosyst. Eng. 41: 467–477.

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, Y., C. Lee, C. Yu, Y.-S. Cheng, R. Zhang, B. M. Jenkins, and J. S. VanderGheynst (2013) Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Appl. Energy 105: 1–7.

    Article  CAS  Google Scholar 

  49. Ren, J., P. Yu, and X. Xu (2019) Straw utilization in China-status and recommendations. Sustainability. 11: 1762.

    Article  CAS  Google Scholar 

  50. Li, Z., Z. Song, B. P. Singh, and H. Wang (2019) The impact of crop residue biochars on silicon and nutrient cycles in croplands. Sci. Total Environ. 659: 673–680.

    Article  CAS  PubMed  Google Scholar 

  51. Cavalli, E., A. Lange, C. Cavalli, and M. Behling (2018) Decomposition and release of nutrients from crop residues on soybean-maize cropping systems. Rev. Bras. Cienc. Agrar. 13: e5527.

    Google Scholar 

  52. Yan, F., Y. Sun, X. Hui, M. Jiang, K. Xiang, Y. Wu, Q. Zhang, Y. Tang, Z. Yang, Y. Sun, and M. Jun (2019) The effect of straw mulch on nitrogen, phosphorus and potassium uptake and use in hybrid rice. Paddy Water Environ. 17: 23–33.

    Article  Google Scholar 

  53. Wu, Y., L. Wang, Y. Tang, Y. Xie, and L. Liu (2019) Effect of applying straw of Solanum photeinocarpum and their hybrids on nutrient of lettuce and soil under cadmium stress. IOP Conf. Ser. Earth Environ. Sci. 358: 022078.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Tianjin Science and Technology Research and Development Plan Project (Grant numbers: 19YFZCSN00280) and Tianjin Rice Industry Technology System Innovation Team Construction (Grant numbers: ITTRRS2018007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ji.

Ethics declarations

The authors declare no competing interests. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Ji, J., Zhang, S. et al. Study on a Low-temperature Cellulose-degrading Strain: Fermentation Optimization, Straw Degradation, and the Effect of Fermentation Broth on Seed Growth. Biotechnol Bioproc E 27, 652–667 (2022). https://doi.org/10.1007/s12257-021-0265-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0265-0

Keywords

Navigation