Skip to main content

Advertisement

Log in

Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset

  • REVIEW
  • Published:
Virologica Sinica

Abstract

Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system—especially the role of monocytes and macrophages during early HIV-1 infection—is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abreu CM, Veenhuis RT, Avalos CR et al (2019) Myeloid and CD4 T cells comprise the latent reservoir in antiretroviral therapy-suppressed SIVmac251-infected Macaques. MBio 10:e01659-e1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Harthi L, Voris J, Patterson BK et al (2004) Evaluation of the impact of highly active antiretroviral therapy on immune recovery in antiretroviral naive patients. HIV Med 5:55–65

    Article  CAS  PubMed  Google Scholar 

  • Anzinger JJ, Butterfield TR, Angelovich TA et al (2014) Monocytes as regulators of inflammation and HIV-related comorbidities during cART. J Immunol Res 2014:569819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auld E, Lin J, Chang E et al (2016) HIV infection is associated with shortened Telomere length in Ugandans with Suspected Tuberculosis. PLoS ONE 11:e0163153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballegaard V, Brændstrup P, Pedersen KK et al (2018) Cytomegalovirus-specific T-cells are associated with immune senescence, but not with systemic inflammation, in people living with HIV. Sci Rep 8:3778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barsov EV (2011) Telomerase and primary T cells: biology and immortalization for adoptive immunotherapy. Immunotherapy 3:407–421

    Article  CAS  PubMed  Google Scholar 

  • Belge K-U, Dayyani F, Horelt A et al (2002) The proinflammatory CD14 + CD16 + DR ++ monocytes are a major source of TNF. J Immunol 168:3536–3542

    Article  CAS  PubMed  Google Scholar 

  • Bertram KM, Botting RA, Baharlou H et al (2019) Identification of HIV transmitting CD11c+ human epidermal dendritic cells. Nat Commun 10:2759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackburn SD, Wherry EJ (2007) IL-10, T cell exhaustion and viral persistence. Trends Microbiol 15:143–146

    Article  CAS  PubMed  Google Scholar 

  • Boasso A, Shearer GM, Chougnet C (2009) Immune dysregulation in human immunodeficiency virus infection: know it, fix it, prevent it? J Intern Med 265:78–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrow P, Bhardwaj N (2008) Innate immune responses in primary HIV-1 infection. Curr Opin HIV AIDS 3:36–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Botting RA, Rana H, Bertram KM et al (2017) Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 27:e1923

    Article  Google Scholar 

  • Boyette LB, Macedo C, Hadi K et al (2017) Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 12:e0176460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenchley JM (2013) Mucosal immunity in human and simian immunodeficiency lentivirus infections. Mucosal Immunol 6:657–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley JM, Karandikar NJ, Betts MR et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  CAS  PubMed  Google Scholar 

  • Brenchley JM, Price DA, Schacker TW et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Brenchley JM, Schacker TW, Ruff LE et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200:749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks DG, Trifilo MJ, Edelmann KH et al (2006) Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12:1301–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buscher K, Marcovecchio P, Hedrick CC, Ley K (2017) Patrolling mechanics of non-classical monocytes in vascular inflammation. Front Cardiovasc Med 4:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrington M, Alter G (2012) Innate immune control of HIV. Cold Spring Harb Perspect Med 2:a007070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cassol E, Malfeld S, Mahasha P et al (2010) Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J Infect Dis 202:723–733

    Article  CAS  PubMed  Google Scholar 

  • Chang JJ, Altfeld M (2010) Innate immune activation in primary HIV-1 infection. J Infect Dis 202:S297–S301

    Article  PubMed  Google Scholar 

  • Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiaansen A, Varga SM, Spencer JV (2015) Viral manipulation of the host immune response. Curr Opin Immunol 36:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clerici M, Shearer GM (1993) A TH1–>TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14:107–111

    Article  CAS  PubMed  Google Scholar 

  • Cohen MS, Shaw GM, McMichael AJ, Haynes BF (2011) Acute HIV-1 infection. N Engl J Med 364:1943–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormican S, Griffin MD (2020) Human monocyte subset distinctions and function: insights from gene expression analysis. Front Immunol 11:1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creagh EM, O’Neill LAJ (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    Article  CAS  PubMed  Google Scholar 

  • De Smedt T, Van Mechelen M, De Becker G et al (1997) Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27:1229–1235

    Article  PubMed  Google Scholar 

  • Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan CJA, Russell RA, Sattentau QJ (2013) High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. AIDS 27:2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Ellery PJ, Tippett E, Chiu Y-L et al (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178:6581–6589

    Article  CAS  PubMed  Google Scholar 

  • Espíndola MS, Soares LS, Galvão-Lima LJ et al (2018) Epigenetic alterations are associated with monocyte immune dysfunctions in HIV-1 infection. Sci Rep 8:5505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Février M, Dorgham K, Rebollo A (2011) CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses 3:586–612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funderburg NT, Lederman MM (2014) Coagulation and morbidity in treated HIV infection. Thromb Res 133(Suppl 1):S21–S24

    Article  PubMed  PubMed Central  Google Scholar 

  • Funderburg NT, Mayne E, Sieg SF et al (2010) Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood 115:161–167.

    Article  CAS  Google Scholar 

  • Funderburg NT, Zidar DA, Shive C et al (2012) Shared monocyte subset phenotypes in HIV-1 infection and in uninfected subjects with acute coronary syndrome. Blood 120:4599–4608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  PubMed  Google Scholar 

  • Ghattas A, Griffiths HR, Devitt A et al (2013) Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol 62:1541–1551

    Article  CAS  PubMed  Google Scholar 

  • Giorgi JV, Liu Z, Hultin LE et al (1993) Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 6:904–912

    CAS  PubMed  Google Scholar 

  • Gren ST, Rasmussen TB, Janciauskiene S et al (2015) A single-cell gene-expression profile reveals inter-cellular heterogeneity within human monocyte subsets. PLoS ONE 10:e0144351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamers AAJ, Dinh HQ, Thomas GD et al (2019) Human monocyte heterogeneity as revealed by high-dimensional mass cytometry. Arterioscler Thromb Vasc Biol 39:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearps AC, Maisa A, Cheng W-J et al (2012) HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS 26:843–853

    Article  CAS  PubMed  Google Scholar 

  • Hilgendorf I, Swirski FK (2012) Making a difference: monocyte heterogeneity in cardiovascular disease. Curr Atheroscler Rep 14:450–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt PW (2007) Role of immune activation in HIV pathogenesis. Curr HIV/AIDS Rep 4:42–47

    Article  PubMed  Google Scholar 

  • Jaroenpool J, Rogers KA, Pattanapanyasat K et al (2007) Differences in the constitutive and SIV infection induced expression of Siglecs by hematopoietic cells from non-human primates. Cell Immunol 250:91–104

    Article  CAS  PubMed  Google Scholar 

  • Kedzierska K, Crowe SM (2001) Cytokines and HIV-1: interactions and clinical implications. Antivir Chem Chemother 12:133–150

    Article  CAS  PubMed  Google Scholar 

  • Kedzierska K, Crowe SM, Turville S, Cunningham AL (2003) The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages. Rev Med Virol 13:39–56

    Article  CAS  PubMed  Google Scholar 

  • Kestens L, Vanham G, Vereecken C et al (1994) Selective increase of activation antigens HLA-DR and CD38 on CD4+ CD45RO+ T lymphocytes during HIV-1 infection. Clin Exp Immunol 95:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klatt NR, Silvestri G, Hirsch V (2012) Nonpathogenic simian immunodeficiency virus infections. Cold Spring Harb Perspect Med 2:a007153

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein SA, Dobmeyer JM, Dobmeyer TS et al (1997) Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS 11:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Kruize Z, Kootstra NA (2019) The role of macrophages in HIV-1 persistence and pathogenesis. Front Microbiol 10:2828

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuller LH, Tracy R, Belloso W et al (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5:e203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Abbas W, Herbein G (2013) TNF and TNF receptor superfamily members in HIV infection: new cellular targets for therapy? Mediators Inflamm 2013:484378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388:621–625

    Article  CAS  PubMed  Google Scholar 

  • Land WG (2015) The role of damage-associated molecular patterns in human diseases: Part I - Promoting inflammation and immunity. Sultan Qaboos Univ Med J 15:e9–e21

    PubMed  PubMed Central  Google Scholar 

  • Lawn SD, Butera ST, Folks TM (2001) Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin Microbiol Rev 14:753–777, table of contents.

  • Lee SA, Sinclair E, Jain V et al (2014) Low proportions of CD28- CD8+ T cells expressing CD57 can be reversed by early ART initiation and predict mortality in treated HIV infection. J Infect Dis 210:374–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi M, Keller TT, van Gorp E, ten Cate H (2003) Infection and inflammation and the coagulation system. Cardiovasc Res 60:26–39

    Article  CAS  PubMed  Google Scholar 

  • Levy E, Xanthou G, Petrakou E et al (2009) Distinct roles of TLR4 and CD14 in LPS-induced inflammatory responses of neonates. Pediatr Res 66:179–184

    Article  CAS  PubMed  Google Scholar 

  • Lindmark E, Tenno T, Chen J, Siegbahn A (1998) IL-10 inhibits LPS-induced human monocyte tissue factor expression in whole blood. Br J Haematol 102:597–604

    Article  CAS  PubMed  Google Scholar 

  • Loo Y-M, Fornek J, Crochet N et al (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345

    Article  CAS  PubMed  Google Scholar 

  • Mascola JR, Haynes BF (2013) HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol Rev 254:225–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meier A, Alter G, Frahm N et al (2007) MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol 81:8180–8191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino KM, Allers C, Didier ES, Kuroda MJ (2017) Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Front Immunol 8:1693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller MM, Petty CS, Tompkins MB, Fogle JE (2014) CD4+CD25+ T regulatory cells activated during feline immunodeficiency virus infection convert T helper cells into functional suppressors through a membrane-bound TGFβ / GARP-mediated mechanism. Virol J 11:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogensen T, Melchjorsen J, Larsen C, Paludan S (2010) Innate immune recognition and activation during HIV infection. Retrovirology 7:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee R, Kanti Barman P, Kumar Thatoi P et al (2015) Non-classical monocytes display inflammatory features: validation in sepsis and systemic lupus erythematous. Sci Rep 5:13886

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa F, May M, Phillips A (2013) Life expectancy living with HIV. Curr Opin Infect Dis 26:17–25

    Article  PubMed  Google Scholar 

  • Nazli A, Chan O, Dobson-Belaire WN et al (2010) Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 6:e1000852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norris PJ, Pappalardo BL, Custer B et al (2006) Elevations in IL-10, TNF-alpha, and IFN-gamma from the earliest point of HIV Type 1 infection. AIDS Res Hum Retroviruses 22:757–762

    Article  CAS  PubMed  Google Scholar 

  • Nyamweya S, Hegedus A, Jaye A et al (2013) Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev Med Virol 23:221–240

    Article  CAS  PubMed  Google Scholar 

  • Ong S-M, Hadadi E, Dang T-M et al (2018) The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 9:266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ownby RL, Kumar AM, Benny Fernandez J et al (2009) Tumor necrosis factor-alpha levels in HIV-1 seropositive injecting drug users. J Neuroimmune Pharmacol 4:350–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiardini M, Müller-Trutwin M (2013) HIV-associated chronic immune activation. Immunol Rev 254:78–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer S, Wiegand AP, Maldarelli F et al (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41:4531–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandrea I, Sodora DL, Silvestri G, Apetrei C (2008) Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 29:419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquereau S, Kumar A, Herbein G (2017) Targeting TNF and TNF receptor pathway in HIV-1 infection: from immune activation to viral reservoirs. Viruses 9:64

    Article  PubMed Central  CAS  Google Scholar 

  • Patel AA, Zhang Y, Fullerton JN et al (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena-Cruz V, Agosto LM, Akiyama H et al (2018) HIV-1 replicates and persists in vaginal epithelial dendritic cells. J Clin Invest 128:3439–3444

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinzone MR, Di Rosa M, Cacopardo B, Nunnari G (2012) HIV RNA suppression and immune restoration: can we do better? Clin Dev Immunol 2012:1–12

    Article  CAS  Google Scholar 

  • Prabhakar B, Banu A, Pavithra HB et al (2011) Immunological failure despite virological suppression in HIV seropositive individuals on antiretroviral therapy. Indian J Sex Transm Dis AIDS 32:94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu VM, Singh AK, Padwal V et al (2019) Monocyte based correlates of immune activation and Viremia in HIV-infected long-term non-progressors. Front Immunol 10:2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulliam L (2014) Cognitive consequences of a sustained monocyte type 1 IFN response in HIV-1 infection. Curr HIV Res 12:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter MA, Pombo C, Betts MR (2012) Cytokine production and dysregulation in HIV pathogenesis: lessons for development of therapeutics and vaccines. Cytokine Growth Factor Rev 23:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roff SR, Noon-Song EN, Yamamoto JK (2014) The significance of interferon-γ in HIV-1 pathogenesis, therapy, and prophylaxis. Front Immunol 4:498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogacev KS, Cremers B, Zawada AM et al (2012) CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 60:1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Rogacev KS, Zawada AM, Emrich I et al (2014) Lower Apo A-I and lower HDL-C levels are associated with higher intermediate CD14++CD16+ monocyte counts that predict cardiovascular events in chronic kidney disease. Arterioscler Thromb Vasc Biol 34:2120–2127

    Article  CAS  PubMed  Google Scholar 

  • Rossol M, Heine H, Meusch U et al (2011) LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 31:379–446

    Article  CAS  PubMed  Google Scholar 

  • Röszer T (2018) Understanding the biology of self-renewing macrophages. Cells 7:103

    Article  PubMed Central  CAS  Google Scholar 

  • Sabbah A, Chang TH, Harnack R et al (2009) Activation of innate immune antiviral responses by Nod2. Nat Immunol 10:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabin CA (2013) Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy? BMC Med 11:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Said EA, Dupuy FP, Trautmann L et al (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med 16:452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutte RJ, Parisi-Amon A, Reichert WM (2009) Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J Biomed Mater Res A 88:128–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semeraro F, Ammollo CT, Semeraro N, Colucci M (2009) Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins. Haematologica 94:819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si Y, Tsou C-L, Croft K, Charo IF (2010) CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Invest 120:1192–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7:a016303

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonza S, Mutimer HP, Oelrichs R et al (2001) Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS 15:17–22

    Article  CAS  PubMed  Google Scholar 

  • Stansfield BK, Ingram DA (2015) Clinical significance of monocyte heterogeneity. Clin Transl Med 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Teer E, Joseph DE, Driescher N et al (2019) HIV and cardiovascular diseases risk: exploring the interplay between T-cell activation, coagulation, monocyte subsets, and lipid subclass alterations. Am J Physiol Heart Circ Physiol 316:H1146–H1157

    Article  CAS  PubMed  Google Scholar 

  • Wallet MA, Rodriguez CA, Yin L et al (2010) Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS 24:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Wilson EB, Brooks DG (2011) The role of IL-10 in regulating immunity to persistent viral infections. Curr Top Microbiol Immunol 350:39–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson EMP, Sereti I (2013) Immune restoration after antiretroviral therapy: the pitfalls of hasty or incomplete repairs. Immunol Rev 254:343–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86

    Article  Google Scholar 

  • Wong KL, Tai JJ-Y, Wong W-C et al (2011) Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118:e16-31

    Article  CAS  PubMed  Google Scholar 

  • Wong ME, Jaworowski A, Hearps AC (2019) The HIV reservoir in monocytes and macrophages. Front Immunol 10:1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (2020) WHO | Data and statistics. In: WHO HIV/AIDS Data Stat. https://www.who.int/hiv/data/en/. Accessed 7 Jul 2020

  • Yang J, Zhang L, Yu C et al (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Zawada AM, Rogacev KS, Schirmer SH et al (2012) Monocyte heterogeneity in human cardiovascular disease. Immunobiology 217:1273–1284

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Muthui D, Holte S et al (2002) Evidence for human immunodeficiency virus type 1 replication in vivo in CD14(+) monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. J Virol 76:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 81:584–592

    Article  CAS  PubMed  Google Scholar 

  • Ziegler-Heitbrock L (2015) Blood monocytes and their subsets: established features and open questions. Front Immunol 6:423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegler-Heitbrock L, Ancuta P, Crowe S et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge financial support provided by the South African Medical Research Council (to MFE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Faadiel Essop.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teer, E., Joseph, D.E., Glashoff, R.H. et al. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol. Sin. 36, 565–576 (2021). https://doi.org/10.1007/s12250-020-00332-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-020-00332-0

Keywords

Navigation