Skip to main content

Advertisement

Log in

Making a Difference: Monocyte Heterogeneity in Cardiovascular Disease

  • Clinical Trials and Their Interpretations (J Plutzky, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Monocytes are frequently described as bone marrow-derived precursors of macrophages. Although many studies support this view, we now appreciate that monocytes neither develop exclusively in the bone marrow nor give rise to all macrophages and dendritic cells. In addition to differentiating to specific leukocyte populations, monocytes, as monocytes, are functionally and ontogenically heterogeneous. In this review we will focus on the development and activity of monocytes and their subsets in mice (Ly-6 Chigh/low) and humans (CD14+/dim/- CD16+/-) in the context of atherosclerosis and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: Of importance

  1. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  PubMed  CAS  Google Scholar 

  2. Stoneman V, Braganza D, Figg N, et al. Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res. 2007;100:884–93.

    Article  PubMed  CAS  Google Scholar 

  3. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.

    Article  PubMed  CAS  Google Scholar 

  4. Fogg DK, Sibon C, Miled C, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 2006;311:83–7.

    Article  PubMed  CAS  Google Scholar 

  5. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92.

    Article  PubMed  CAS  Google Scholar 

  6. Sunderkotter C, Nikolic T, Dillon MJ, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 2004;172:4410–7.

    PubMed  Google Scholar 

  7. Varol C, Landsman L, Fogg DK, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007;204:171–80.

    Article  PubMed  CAS  Google Scholar 

  8. Landsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol. 2007;178:2000–7.

    PubMed  CAS  Google Scholar 

  9. • Hanna RN, Carlin LM, Hubbeling HG, et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol. 2011;12:778–85. In this study nuclear receptor Nur77 is being identified as a crucial transcription factor for normal Ly6C low but not Ly6C high monocyte development in the bone marrow. These mice may provide useful tools to study subset conversion versus distinct lineage derivation.

    Article  PubMed  CAS  Google Scholar 

  10. Alder JK, Georgantas RW, Hildreth RL, et al. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol. 2008;180:5645–52.

    PubMed  CAS  Google Scholar 

  11. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7:333–7.

    Article  PubMed  CAS  Google Scholar 

  12. Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008;8:290–301.

    Article  PubMed  CAS  Google Scholar 

  13. Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–6.

    Article  PubMed  CAS  Google Scholar 

  14. Leuschner F, Panizzi P, Chico-Calero I, et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107:1364–73.

    Article  PubMed  CAS  Google Scholar 

  15. • Robbins CS, Chudnovskiy A, Rauch PJ, et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation. 2012;125:364–74. This study describes how the spleen becomes a site of extramedullary monocytopoiesis during atherosclerosis directly contributing to lesion formation.

    Article  PubMed  Google Scholar 

  16. Leuschner F, Rauch PJ, Ueno T, et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 2012;209:123–37.

    Article  PubMed  CAS  Google Scholar 

  17. Cortez-Retamozo V, Etzrodt M, Newton A, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A. 2012;109:2491–6.

    Article  PubMed  CAS  Google Scholar 

  18. Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007;117:195–205.

    Article  PubMed  CAS  Google Scholar 

  19. Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007;117:185–94.

    Article  PubMed  CAS  Google Scholar 

  20. • Murphy AJ, Akhtari M, Tolani S, et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest. 2011;121:4138–49. This study identifies impairment of cholesterol efflux in bone marrow stem cells as a mechanism for hypercholesterolemia associated monocytosis in atherosclerotic mouse models.

    Article  PubMed  CAS  Google Scholar 

  21. Yvan-Charvet L, Pagler T, Gautier EL, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010;328:1689–93.

    Article  PubMed  CAS  Google Scholar 

  22. Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol. 2004;20:455–80.

    Article  PubMed  CAS  Google Scholar 

  23. Combadiere C, Potteaux S, Rodero M, et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation. 2008;117:1649–57.

    Article  PubMed  CAS  Google Scholar 

  24. Wu H, Gower RM, Wang H, et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation. 2009;119:2708–17.

    Article  PubMed  CAS  Google Scholar 

  25. Hanna RN, Shaked I, Hubbeling HG, et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res. 2012;110:416–27.

    Article  PubMed  CAS  Google Scholar 

  26. Hamers AA, Vos M, Rassam F, et al. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ Res. 2012;110:428–38.

    Article  PubMed  CAS  Google Scholar 

  27. • Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204:3037–47. This is the first study that identifies distinct roles for the two monocyte subsets during infarct healing.

    Article  PubMed  CAS  Google Scholar 

  28. Panizzi P, Swirski FK, Figueiredo JL, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol. 2010;55:1629–38.

    Article  PubMed  Google Scholar 

  29. Leuschner F, Dutta P, Gorbatov R, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29:1005–10.

    Article  PubMed  CAS  Google Scholar 

  30. Dong ZM, Brown AA, Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation. 2000;101:2290–5.

    Article  PubMed  CAS  Google Scholar 

  31. Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood. 2003;101:2661–6.

    Article  PubMed  CAS  Google Scholar 

  32. An G, Wang H, Tang R, et al. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation. 2008;117:3227–37.

    Article  PubMed  CAS  Google Scholar 

  33. Eriksson EE, Xie X, Werr J, et al. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med. 2001;194:205–18.

    Article  PubMed  CAS  Google Scholar 

  34. Kling D, Fingerle J, Harlan JM, et al. Mononuclear leukocytes invade rabbit arterial intima during thickening formation via CD18-and VLA-4-dependent mechanisms and stimulate smooth muscle migration. Circ Res. 1995;77:1121–8.

    Article  PubMed  CAS  Google Scholar 

  35. Nie Q, Fan J, Haraoka S, et al. Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats: implications of the ICAM-1 and LFA-1 pathway in atherogenesis. Lab Invest. 1997;77:469–82.

    PubMed  CAS  Google Scholar 

  36. Huo Y, Hafezi-Moghadam A, Ley K. Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res. 2000;87:153–9.

    Article  PubMed  CAS  Google Scholar 

  37. Chuang KP, Huang YF, Hsu YL, et al. Ligation of lymphocyte function-associated antigen-1 on monocytes decreases very late antigen-4-mediated adhesion through a reactive oxygen species-dependent pathway. Blood. 2004;104:4046–53.

    Article  PubMed  CAS  Google Scholar 

  38. • Wolf D, Hohmann JD, Wiedemann A, et al. Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis--but does not affect immunity and thrombosis in mice. Circ Res. 2011;109:1269–79. This work is a good example of novel therapeutic strategies in atherosclerosis. Selective blockade of CD40L interaction with Mac-1 but not with other binding partners attenuates atherogenesis while avoiding harmful side effects caused by indiscriminate inhibition of CD40L.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou Q, Liao JK. Pleiotropic effects of statins. Basic research and clinical perspectives. Circ J. 2010;74:818–26.

    Article  PubMed  CAS  Google Scholar 

  40. Hilgendorf I, Eisele S, Remer I, et al. The oral spleen tyrosine kinase inhibitor fostamatinib attenuates inflammation and atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2011;31:1991–9.

    Article  PubMed  CAS  Google Scholar 

  41. Geissmann F, Gordon S, Hume DA, et al. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010;10:453–60.

    Article  PubMed  CAS  Google Scholar 

  42. Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity. 2011;35:323–35.

    Article  PubMed  CAS  Google Scholar 

  43. Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90.

    Article  PubMed  CAS  Google Scholar 

  44. • Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61. A comprehensive basic review on monocyte, macrophage and dendritic cell biology.

    Article  PubMed  CAS  Google Scholar 

  45. Ginhoux F, Liu K, Helft J, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med. 2009;206:3115–30.

    Article  PubMed  CAS  Google Scholar 

  46. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606–16.

    Article  PubMed  CAS  Google Scholar 

  47. Miller YI, Viriyakosol S, Worrall DS, et al. Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler Thromb Vasc Biol. 2005;25:1213–9.

    Article  PubMed  CAS  Google Scholar 

  48. Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155–61.

    Article  PubMed  CAS  Google Scholar 

  49. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008;454:470–7.

    Article  PubMed  CAS  Google Scholar 

  50. Gleissner CA, Shaked I, Little KM, et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol. 2010;184:4810–8.

    Article  PubMed  CAS  Google Scholar 

  51. Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010;107:737–46.

    Article  PubMed  CAS  Google Scholar 

  52. Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol. 2011;31:1506–16.

    Article  PubMed  CAS  Google Scholar 

  53. Psaltis PJ, Harbuzariu A, Delacroix S, et al. Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta. Circulation. 2012;125:592–603.

    Article  PubMed  Google Scholar 

  54. Zhu SN, Chen M, Jongstra-Bilen J, et al. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J Exp Med. 2009;206:2141–9.

    Article  PubMed  CAS  Google Scholar 

  55. Choi JH, Cheong C, Dandamudi DB, et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity. 2011;35:819–31.

    Article  PubMed  CAS  Google Scholar 

  56. Daissormont IT, Christ A, Temmerman L, et al. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ Res. 2011;109:1387–95.

    Article  PubMed  CAS  Google Scholar 

  57. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    Article  PubMed  CAS  Google Scholar 

  58. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74:2527–34.

    PubMed  CAS  Google Scholar 

  59. Belge KU, Dayyani F, Horelt A, et al. The proinflammatory CD14+ CD16+ DR++ monocytes are a major source of TNF. J Immunol. 2002;168:3536–42.

    PubMed  CAS  Google Scholar 

  60. Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81:584–92.

    Article  PubMed  CAS  Google Scholar 

  61. Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010;115:e10–9.

    Article  PubMed  CAS  Google Scholar 

  62. Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33:375–86.

    Article  PubMed  CAS  Google Scholar 

  63. Skrzeczynska-Moncznik J, Bzowska M, Loseke S, et al. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand J Immunol. 2008;67:152–9.

    Article  PubMed  CAS  Google Scholar 

  64. Wong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–31.

    Article  PubMed  CAS  Google Scholar 

  65. Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. 2011;118:e50–61.

    Article  PubMed  CAS  Google Scholar 

  66. Brown DW, Giles WH, Croft JB. White blood cell count: an independent predictor of coronary heart disease mortality among a national cohort. J Clin Epidemiol. 2001;54:316–22.

    Article  PubMed  CAS  Google Scholar 

  67. Madjid M, Awan I, Willerson JT, et al. Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol. 2004;44:1945–56.

    Article  PubMed  Google Scholar 

  68. Ohira T, Shahar E, Chambless LE, et al. Risk factors for ischemic stroke subtypes: the Atherosclerosis Risk in Communities study. Stroke. 2006;37:2493–8.

    Article  PubMed  CAS  Google Scholar 

  69. Giugliano G, Brevetti G, Lanero S, et al. Leukocyte count in peripheral arterial disease: A simple, reliable, inexpensive approach to cardiovascular risk prediction. Atherosclerosis. 2010;210:288–93.

    Article  PubMed  CAS  Google Scholar 

  70. Grau AJ, Boddy AW, Dukovic DA, et al. Leukocyte count as an independent predictor of recurrent ischemic events. Stroke. 2004;35:1147–52.

    Article  PubMed  Google Scholar 

  71. Adamsson Eryd S, Smith JG, Melander O, et al. Incidence of coronary events and case fatality rate in relation to blood lymphocyte and neutrophil counts. Arterioscler Thromb Vasc Biol. 2012;32:533–9.

    Article  PubMed  CAS  Google Scholar 

  72. Nasir K, Guallar E, Navas-Acien A, et al. Relationship of monocyte count and peripheral arterial disease: results from the National Health and Nutrition Examination Survey 1999-2002. Arterioscler Thromb Vasc Biol. 2005;25:1966–71.

    Article  PubMed  CAS  Google Scholar 

  73. Horne BD, Anderson JL, John JM, et al. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol. 2005;45:1638–43.

    Article  PubMed  Google Scholar 

  74. Dragu R, Huri S, Zuckerman R, et al. Predictive value of white blood cell subtypes for long-term outcome following myocardial infarction. Atherosclerosis. 2008;196:405–12.

    Article  PubMed  CAS  Google Scholar 

  75. Gurm HS, Bhatt DL, Lincoff AM, et al. Impact of preprocedural white blood cell count on long term mortality after percutaneous coronary intervention: insights from the EPIC, EPILOG, and EPISTENT trials. Heart. 2003;89:1200–4.

    Article  PubMed  CAS  Google Scholar 

  76. Rana JS, Boekholdt SM, Ridker PM, et al. Differential leucocyte count and the risk of future coronary artery disease in healthy men and women: the EPIC-Norfolk Prospective Population Study. J Intern Med. 2007;262:678–89.

    Article  PubMed  CAS  Google Scholar 

  77. Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler Thromb Vasc Biol. 2005;25:658–70.

    Article  PubMed  CAS  Google Scholar 

  78. Rothe G, Herr AS, Stohr J, et al. A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease. Atherosclerosis. 1999;144:251–61.

    Article  PubMed  CAS  Google Scholar 

  79. Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J. 2011;32:84–92.

    Article  PubMed  CAS  Google Scholar 

  80. Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+ and CD14+ CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2322–30.

    Article  PubMed  CAS  Google Scholar 

  81. Timmerman KL, Flynn MG, Coen PM, et al. Exercise training-induced lowering of inflammatory (CD14+ CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J Leukoc Biol. 2008;84:1271–8.

    Article  PubMed  CAS  Google Scholar 

  82. Heine GH, Ulrich C, Seibert E, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008;73:622–9.

    Article  PubMed  CAS  Google Scholar 

  83. Schlitt A, Heine GH, Blankenberg S, et al. CD14+ CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost. 2004;92:419–24.

    PubMed  CAS  Google Scholar 

  84. Wildgruber M, Lee H, Chudnovskiy A, et al. Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS One. 2009;4:e5663.

    Article  PubMed  Google Scholar 

  85. Imanishi T, Ikejima H, Tsujioka H, et al. Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris. Atherosclerosis. 2010;212:628–35.

    Article  PubMed  CAS  Google Scholar 

  86. Kashiwagi M, Imanishi T, Tsujioka H, et al. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis. 2010;212:171–6.

    Article  PubMed  CAS  Google Scholar 

  87. Liu Y, Imanishi T, Ikejima H, et al. Association between circulating monocyte subsets and in-stent restenosis after coronary stent implantation in patients with ST-elevation myocardial infarction. Circ J. 2010;74:2585–91.

    Article  PubMed  Google Scholar 

  88. Hristov M, Leyendecker T, Schuhmann C, et al. Circulating monocyte subsets and cardiovascular risk factors in coronary artery disease. Thromb Haemost. 2010;104:412–4.

    Article  PubMed  CAS  Google Scholar 

  89. • Berg KE, Ljungcrantz I, Andersson L, et al. Elevated CD14++CD16- monocytes predict cardiovascular events. Circ Cardiovasc Genet. 2012;5:122–31. This is the first large cohort study identifying increased numbers of classical CD14 high CD16 monocytes as an independent risk factor for ischemic cardiovascular events in a general population.

    Article  PubMed  CAS  Google Scholar 

  90. Urra X, Villamor N, Amaro S, et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab. 2009;29:994–1002.

    Article  PubMed  CAS  Google Scholar 

  91. Tsujioka H, Imanishi T, Ikejima H, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol. 2009;54:130–8.

    Article  PubMed  Google Scholar 

  92. Barisione C, Garibaldi S, Ghigliotti G, et al. CD14CD16 monocyte subset levels in heart failure patients. Dis Markers. 2010;28:115–24.

    PubMed  CAS  Google Scholar 

  93. Tapp LD, Shantsila E, Wrigley BJ et al.: The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. J Thromb Haemost 2011;10:1231–41.

    Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip K. Swirski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilgendorf, I., Swirski, F.K. Making a Difference: Monocyte Heterogeneity in Cardiovascular Disease. Curr Atheroscler Rep 14, 450–459 (2012). https://doi.org/10.1007/s11883-012-0274-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-012-0274-8

Keywords

Navigation