Skip to main content

Advertisement

Log in

An Experimental Design Approach for Development of Crocin-Loaded Microparticles Embedded in Gelatin/Oxidized Alginate-Based Hydrogel

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to prepare gelatin/oxidized alginate (OAlg) hydrogel incorporating chitosan (CS)/alginate (Alg) microparticles (MPs) for topical delivery of crocin and maintaining MPs at the target site.

Methods

Crocin-loaded MPs were prepared using the ionic gelation method, and the effects of CS, Alg, and tripolyphosphate (TPP) concentrations on particle size and entrapment efficiency% (EE) were evaluated by applying a factorial design. OAlg was synthesized, and the optimum MP formulation was loaded into gelatin/OAlg hydrogel. The developed formulation was characterized in terms of morphology, chemical structure, crystallinity, thermal behavior, viscosity, swelling behavior, mucoadhesion, and in vitro release profile.

Results

The designed particles had a size ranging from 7.2 to 47.8 µm with the EE results varying between 12.5 and 58.4%. The mathematical models with suitable determination coefficients (R2) were established which confirmed a satisfactory correlation between the independent variables and the results. The optimized formulation showed a particle size of ~ 28 µm and a zeta potential of ~ 24 mV with about 58% crocin entrapment. The successful oxidation process was confirmed by the appearance of aldehyde peak in FTIR spectroscopy, and the oxidation degree (OD) of prepared OAlg was found to be about 62%. The prepared complex could release crocin in a sustained manner through 48 h and showed superior mucoadhesive strength, compared to gelatin/Alg-based hydrogel.

Conclusion

The fabricated gelatin/OAlg hydrogel containing CS/Alg MPs exhibited the promising potential to be utilized in mucosal delivery applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Song Y-N, et al. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia. 2021;153:104969.

    Article  PubMed  CAS  Google Scholar 

  2. Pashirzad M, et al. Therapeutic potency of crocin in the treatment of inflammatory diseases: Current status and perspective. J Cell Physiol. 2019;234(9):14601–11.

    Article  PubMed  CAS  Google Scholar 

  3. Fagot D, et al. Crocin, a natural molecule with potentially beneficial effects against skin ageing. Int J Cosmet Sci. 2018;40(4):388–400.

    Article  PubMed  CAS  Google Scholar 

  4. Alemzadeh E, Oryan A. Effectiveness of a Crocus sativus extract on burn wounds in rats. Planta Med. 2018;84(16):1191–200.

    Article  PubMed  CAS  Google Scholar 

  5. Kocaman G, et al. Protective effects of crocin on biochemistry and histopathology of experimental periodontitis in rats. Biotechnic & histochemistry : official publication of the Biological Stain Commission. 2019;94(5):366–73.

    Article  PubMed  CAS  Google Scholar 

  6. Tsimidou M, Biliaderis CG. Kinetic studies of saffron (Crocus sativus L.) quality deterioration. J Agri Food Chem. 1997;45(8):2890–2898.

  7. Esposito E, et al. Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdevices. 2016;18(6):108.

    Article  PubMed  Google Scholar 

  8. Esposito E, et al. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater Sci Eng C Mater Biol Appl. 2017;71:669–77.

    Article  PubMed  CAS  Google Scholar 

  9. Zeka K, et al. New hydrogels enriched with antioxidants from saffron crocus can find applications in wound treatment and/or beautification. Skin Pharmacol Physiol. 2018;31(2):95–8.

    Article  PubMed  CAS  Google Scholar 

  10. Lagreca E, et al. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 2020;9(4):153–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rahaiee S, et al. Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties. Int J Biol Macromol. 2017;99:401–8.

    Article  PubMed  CAS  Google Scholar 

  12. Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537(1–2):223–44.

    Article  PubMed  CAS  Google Scholar 

  13. Niculescu AG, Grumezescu AM. Applications of chitosan-alginate-based nanoparticles-an up-to-date review. Nanomaterials (Basel). 2022;12(2):186.

    Article  PubMed  CAS  Google Scholar 

  14. Caetano LA, Almeida AJ, Gonçalves LM. Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar Drugs. 2016;14(5):90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev. 2016;96:54–76.

    Article  PubMed  CAS  Google Scholar 

  16. Pedroso-Santana S, Fleitas N. Ionotropic gelation method in the synthesis of nano/microparticles for biomedical purposes. Polym Int. 2020;69:443–7.

    Article  CAS  Google Scholar 

  17. Gao W, et al. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng. 2016;44(6):2049–61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nunes D, et al. Polymeric nanoparticles-loaded hydrogels for biomedical applications: a systematic review on in vivo findings. Polymers (Basel). 2022;14(5):1010.

    Article  PubMed  CAS  Google Scholar 

  19. Geng Z, et al. Preparation and characterization of a dual cross-linking injectable hydrogel based on sodium alginate and chitosan quaternary ammonium salt. Carbohydr Res. 2021;507:108389.

    Article  PubMed  CAS  Google Scholar 

  20. Tao J, et al. Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. Int J Nanomedicine. 2020;15:5855–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Baniasadi H, et al. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications. J Biomater Appl. 2016;31(1):152–61.

    Article  PubMed  CAS  Google Scholar 

  22. Reakasame S, et al. Biofabrication and characterization of alginate dialdehyde-gelatin microcapsules incorporating bioactive glass for cell delivery application. Macromol Biosci. 2020;20(10): e2000138.

    Article  PubMed  Google Scholar 

  23. Petros S, Tesfaye T, Ayele M. A review on gelatin based hydrogels for medical textile applications. J Eng. 2020.

  24. Reakasame S, Boccaccini AR. Oxidized Alginate-based hydrogels for tissue engineering applications: a review. Biomacromol. 2018;19(1):3–21.

    Article  CAS  Google Scholar 

  25. Mohabatpour F, et al. Self-crosslinkable oxidized alginate-carboxymethyl chitosan hydrogels as an injectable cell carrier for in vitro dental enamel regeneration. J Funct Biomater. 2022;13(2):71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen Y, et al. A biocompatible, stimuli-responsive, and injectable hydrogel with triple dynamic bonds. Molecules. 2020;25(13):3050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. De Caro V, et al. Aloin delivery on buccal mucosa:ex vivostudies and design of a new locoregional dosing system. Drug Dev Ind Pharm. 2014;41(9):1541–7.

    Article  Google Scholar 

  28. Farzinfar E, Paydayesh A. Investigation of polyvinyl alcohol nanocomposite hydrogels containing chitosan nanoparticles as wound dressing. Int J Polym Mater Polym Biomater. 2018;68:1–11.

    Google Scholar 

  29. Ren B, et al. Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. Int J Biol Macromol. 2018;118(Pt A):1257–66.

    Article  PubMed  CAS  Google Scholar 

  30. Vieira EF, et al. Polysaccharide-based hydrogels: preparation, characterization, and drug interaction behaviour. Biomacromol. 2008;9(4):1195–9.

    Article  CAS  Google Scholar 

  31. Sarker B, et al. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem. 2014;2(11):1470–82.

    CAS  Google Scholar 

  32. Lee FY, Htar T, Akowuah G. ATR-FTIR and spectrometric methods for the assay of crocin in commercial saffron spices (Crocus savitus L.). Int J Food Prop. 2014;18:1773–1783.

  33. Rahaiee S, et al. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Int J Biol Macromol. 2015;79:423–32.

    Article  PubMed  CAS  Google Scholar 

  34. Gjoseva S, et al. Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym. 2018;186:260–72.

    Article  PubMed  CAS  Google Scholar 

  35. Chandrasekar V, Coupland JN, Anantheswaran RC. Characterization of nisin containing chitosan-alginate microparticles. Food Hydrocoll. 2017;69:301–7.

    Article  CAS  Google Scholar 

  36. Martin-Saldana S, et al. Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: Recycling shrimp fishing industry waste. Carbohydr Polym. 2018;200:321–31.

    Article  PubMed  CAS  Google Scholar 

  37. Emami Z, et al. Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydr Polym. 2018;198:509–17.

    Article  PubMed  CAS  Google Scholar 

  38. Abou-Zeid RE, et al. Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int J Biol Macromol. 2019;141:1280–6.

    Article  PubMed  CAS  Google Scholar 

  39. Mukhopadhyay P, et al. Oral delivery of quercetin to diabetic animals using novel pH responsive carboxypropionylated chitosan/alginate microparticles. RSC Adv. 2016;6(77):73210–21.

    Article  CAS  Google Scholar 

  40. Mehryab,F, Taghizadeh F, Haeri A. Preparation and in vitro characterization of crocin-loaded casein hydrogels: crocin-loaded casein hydrogels. Trends Pept Protein Sci. 2022;7:1–9(e3).

  41. Banach M, et al. A chemical method of the production of “heavy” sodium tripolyphosphate with the high content of Form I or Form II. Pol J Chem Technol. 2009;11:13–20.

    Article  Google Scholar 

  42. Wang H, et al. A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers (Basel). 2022;14(9):1679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Manzon D, et al. Quality by design: comparison of design space construction methods in the case of design of experiments. Chemom Intell Lab Syst. 2020;200:104002.

    Article  CAS  Google Scholar 

  44. Cunha S, et al. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomedicine. 2020;28:102206.

    Article  PubMed  CAS  Google Scholar 

  45. Omar Zaki SS, Ibrahim MN, Katas H. Particle size affects concentration-dependent cytotoxicity of chitosan nanoparticles towards mouse hematopoietic stem cells. J Nanotech. 2015:1–5.

  46. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216–25.

    Article  PubMed  CAS  Google Scholar 

  47. Xu Y, Hanna MA. Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: synthesis and characterization. J Microencapsul. 2007;24(2):143–51.

    Article  PubMed  Google Scholar 

  48. Stagner WC, et al. Human volunteer, in vitro, and molecular level evaluation of an optimized taste-masked isoniazid-chitosan spray-dried microparticle matrix. Int J Pharm. 2019;572:118774.

    Article  PubMed  CAS  Google Scholar 

  49. Palma E, et al. Improvement of the therapeutic treatment of inflammatory bowel diseases following rectal administration of mesalazine-loaded chitosan microparticles vs Asamax®. Carbohyd Polym. 2019;212:430–8.

    Article  CAS  Google Scholar 

  50. Tang ZX, Qian JQ, Shi LE. Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl Biochem Biotechnol. 2007;136(1):77–96.

    Article  PubMed  CAS  Google Scholar 

  51. Lacerda L, et al. Development and evaluation of pH-sensitive sodium alginate/chitosan microparticles containing the antituberculosis drug rifampicin. Mater Sci Eng C Mater Biol Appl. 2014;39:161–7.

    Article  PubMed  CAS  Google Scholar 

  52. Zhou L, et al. Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact Mater. 2021;6(3):890–904.

    Article  PubMed  CAS  Google Scholar 

  53. Carvalho FC, et al. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev Ind Pharm. 2013;39(11):1750–7.

    Article  PubMed  CAS  Google Scholar 

  54. Modaresifar K, Hadjizadeh A, Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif Cells Nanomed Biotechnol. 2018;46(8):1799–808.

    PubMed  CAS  Google Scholar 

  55. Wang Q, Wang Q, Teng W. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications. Int J Nanomedicine. 2016;11:131–44.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cao L, et al. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials. 2014;35(9):2730–42.

    Article  PubMed  CAS  Google Scholar 

  57. Afshar M, et al. Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. J Drug Deliv Sci Technol. 2020;56:101530.

    Article  CAS  Google Scholar 

  58. Cui CL, et al. Development of sustainable carrier in thermosensitive hydrogel based on chitosan/alginate nanoparticles for in situ delivery system. Polym Compos. 2018;40(6):2187–96.

    Article  Google Scholar 

  59. Li DD, et al. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. JMat Scie Mat Med. 2016;27(8):134.

    Article  Google Scholar 

  60. Moreno JAS, et al. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr Polym. 2018;190:240–7.

    Article  PubMed  CAS  Google Scholar 

  61. Kumar A, et al. Mucoadhesive formulations: innovations, merits, drawbacks, and future outlook. Pharm Dev Technol. 2020;25(7):797–814.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haeri.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merati, F., Mehryab, F., Mortazavi, S.A. et al. An Experimental Design Approach for Development of Crocin-Loaded Microparticles Embedded in Gelatin/Oxidized Alginate-Based Hydrogel. J Pharm Innov 18, 1812–1826 (2023). https://doi.org/10.1007/s12247-023-09755-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09755-0

Keywords

Navigation