Skip to main content

Advertisement

Log in

Nitrogen and Phosphorus Export After Flooding of Agricultural Land by Coastal Managed Realignment

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Climate-driven sea level rise has severe consequences for drained agricultural areas near coasts. The least productive of these can be restored into marine wetlands of high ecological quality by managed realignment. This study assessed the nitrogen (N) and phosphorus (P) balance in a 214 ha coastal lagoon formed after flooding of agricultural land by managed realignment. N and P loss from the soils was monitored over a 5-year period after flooding using three independent approaches: (1) temporal changes in N and P inventories of the soil; (2) flux of dissolved inorganic N and P from the flooded soil; and (3) tidal N and P exchange across the outer boundary in the form of particulate and dissolved nutrients. All three approaches showed similar initial release and tidal export of N and P the first year(s) after flooding followed by decreasing rates. The annual loss ranged from 157 to 299 kg N ha−1 yr−1 and 29 to 63 kg P ha−1 yr−1 during the first year. N loss decreased rapidly after the first 2 years and reached a level of 28–65 kg N ha−1 yr−1, while P loss declined after the first year and remained stable and relatively high at 18–32 kg P ha−1 yr−1 thereafter. High N and P export after implementing managed realignment of agricultural land may deteriorate environmental conditions in the adjacent marine recipients for at least 5 years. Particularly small and stagnant water bodies vulnerable to eutrophication should be avoided as recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aller, R.C. 1978. Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry. American Journal of Science 278 (9): 1185–1234.

    CAS  Google Scholar 

  • Aller, R.C. 2014. Sedimentary diagenesis, depositional environments, and benthic fluxes. In Treatise on geochemistry, ed. H.D. Holland and K.K. Turekian, vol. 8, Second ed., 293–334. Oxford: Elsevier.

    Google Scholar 

  • Alvarez, R., A. Gimenez, M.M. Caffaro, F. Pagnanini, V. Recondo, C.D. Molina, G. Berhongaray, M.R. Mendoza, D.A. Ramil, F. Facio, J.L. De Paepe, H.S. Steinbach, and R.J. Cantet. 2018. Land use affected nutrient mass with minor impact on stoichiometry ratios in Pampean soils. Nutrient Cycling in Agroecosystems 110 (2): 257–276.

    CAS  Google Scholar 

  • Andrews, J.E., G. Samways, and G.B. Shimmield. 2008. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK. Science of the Total Environment 405 (1-3): 1–13.

    CAS  Google Scholar 

  • Anschutz, P., G. Chaillou, and P. Lecroart. 2007. Phosphorus diagenesis in sediment of the Thau Lagoon. Estuarine, Coastal and Shelf Science 72 (3): 447–456.

    Google Scholar 

  • Anschutz, P., S. Bouchet, G. Abril, R. Bridou, E. Tessier, and D. Amouroux. 2019. In vitro simulation of oscillatory redox conditions in intertidal sediments: N, Mn, Fe, and P coupling. Continental Shelf Research 177: 33–41.

    Google Scholar 

  • Ardón, M., J.L. Morse, B.P. Colman, and E.S. Bernhardt. 2013. Drought-induced saltwater incursion leads to increased wetland nitrogen export. Global Change Biology 19 (10): 2976–2985.

    Google Scholar 

  • Ardón, M., A.M. Helton, M.D. Scheuerell, and E.S. Bernhardt. 2017. Fertilizer legacies meet saltwater incursion: Challenges and constraints for coastal plain wetland restoration. Elementa Science of the Anthropocene 5: 41. https://doi.org/10.1525/elementa.236.

    Article  Google Scholar 

  • Arnbjerg-Nielsen, K., L. Leonardsen, and H. Madsen. 2015. Evaluating adaptation options for urban flooding based on new high-end emission scenario regional climate model simulations. Climate Research 64 (1): 73–84.

    Google Scholar 

  • Blackwell, M.S.A., D.V. Hogan, and E. Maltby. 2004. The short-term impact of managed realignment on soil environmental variables and hydrology. Estuarine, Coastal and Shelf Science 59 (4): 687–701.

    CAS  Google Scholar 

  • Blackwell, M.S.A., S. Yamulki, and R. Bol. 2010. Nitrous oxide production and denitrification rates in estuarine intertidal saltmarsh and managed realignment zones. Estuarine, Coastal and Shelf Science 87 (4): 591–600.

    CAS  Google Scholar 

  • Bouwman, L., K.K. Goldewijk, K.W. Van Der Hoek, A.H.W. Beusen, D.P. Van Vuuren, J. Willems, M.C. Rufino, and E. Stehfest. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences 110 (52): 20882–20887.

    CAS  Google Scholar 

  • Brady, A.F., and C.S. Boda. 2017. How do we know if managed realignment for coastal habitat compensation is successful? Insights from the implementation of the EU Birds and Habitats Directive in England. Ocean & Coastal Management 143: 164–174.

    Google Scholar 

  • Brin, L.D., A.E. Giblin, and J.J. Rich. 2014. Environmental controls of anammox and denitrification in southern New England estuarine and shelf sediments. Limnology and Oceanography 59 (3): 851–860.

    CAS  Google Scholar 

  • Burden, A., R.A. Garbutt, C.D. Evans, D.L. Jones, and D.M. Cooper. 2013. Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment. Estuarine, Coastal and Shelf Science 120: 12–20.

    CAS  Google Scholar 

  • Burton, E.D., R.T. Bush, S.G. Johnston, L.A. Sullivan, and A.F. Keene. 2011. Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland. Geochimica et Cosmochimica Acta 75 (12): 3434–3451.

    CAS  Google Scholar 

  • Chapman, P.M. 2017. Assessing and managing stressors in a changing marine environment. Marine Pollution Bulletin 124 (2): 587–590.

    CAS  Google Scholar 

  • Clavero, V., J.J. Izquierdo, J.A. Fernandez, and F.X. Niell. 2000. Seasonal fluxes of phosphate and ammonium across the sediment-water interface in a shallow small estuary (Palmones River, southern Spain). Marine Ecology Progress Series 198: 51–60.

    CAS  Google Scholar 

  • Clement, D.R., and A.D. Steinman. 2017. Phosphorus loading and ecological impacts from agricultural tile drains in a west Michigan watershed. Journal of Great Lakes Research 43 (1): 50–58.

    CAS  Google Scholar 

  • Cleveland, C.C., and D. Liptzin. 2007. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85 (3): 235–252.

    Google Scholar 

  • Colmer, T.D., O. Pedersen, A.M. Wetson, and T.J. Flowers. 2013. Oxygen dynamics in a salt-marsh soil and in Suaeda maritima during tidal submergence. Environmental and Experimental Botany 92: 73–82.

    CAS  Google Scholar 

  • Dale, J., H.M. Burgess, and A.B. Cundy. 2017. Sedimentation rhythms and hydrodynamics in two engineered environments in an open coast managed realignment site. Marine Geology 383: 120–131.

    Google Scholar 

  • Dale, J., A.B. Cundy, K.L. Spencer, S.J. Carr, I.W. Croudace, H.M. Burgess, and D.J. Nash. 2019. Sediment structure and physicochemical changes following tidal inundation at a large open coast managed realignment site. Science of the Total Environment 660: 1419–1432.

    CAS  Google Scholar 

  • Dausse, A., A. Garbutt, L. Norman, S. Papadimitriou, L.M. Jones, P.E. Robins, and D.N. Thomas. 2012. Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient. Estuarine, Coastal and Shelf Science 100: 83–92.

    CAS  Google Scholar 

  • Dijkstra, N., C.P. Slomp, and T. Behrends. 2016. Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea. Chemical Geology 438: 58–72.

    CAS  Google Scholar 

  • Dunne, E.J., N. Culleton, G. O'Donovan, R. Harrington, and K. Daly. 2005. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland. Water Research 39 (18): 4355–4362.

    CAS  Google Scholar 

  • Esteves, L. S. 2014. Managed realignment: A viable long-term coastal management strategy? SpringerBriefs in Environmental Science, DOI https://doi.org/10.1007/978-94-017-9029-1_1. Springer Science+Business Media, Dordrecht.

  • Etheridge, J.R., F. Birgand, and M.R. Burchell. 2015. Quantifying nutrient and suspended solids fluxes in a constructed tidal marsh following rainfall: The value of capturing the rapid changes in flow and concentrations. Ecological Engineering 78: 41–52.

    Google Scholar 

  • Fallesen, G., F. Andersen, and B. Larsen. 2000. Life, death and revival of the hypertrophic Mariager Fjord, Denmark. Journal of Marine Systems 25 (3-4): 313–321.

    Google Scholar 

  • Fenger, J., E. Buch, P.R. Jakobsen, and P. Vestergaard. 2008. Danish attitudes and reactions to the threat of sea-level rise. Journal of Coastal Research 24: 394–402.

    Google Scholar 

  • Flindt, M.R., and L. Kamp-Nielsen. 1997. Modelling an estuarine eutrophication gradient. Ecological Modelling 102 (1): 143–154.

    CAS  Google Scholar 

  • Flindt, M., J. Salomonsen, M. Carrer, M. Bocci, and L. Kamp-Nielsen. 1997. Loss, growth and transport dynamics of Chaetomorpha aerea and Ulva rigida in the Lagoon of Venice during an early summer field campaign. Ecological Modelling 192: 133–141.

    Google Scholar 

  • Flindt, M.R., J. Neto, C.L. Amos, M.A. Pardal, A. Bergamasco, C.B. Pedersen, and F.Ø. Andersen. 2004 Plant bound nutrient transport. Mass transport in estuaries and lagoons In Estuarine nutrient cycling: The influence of primary producers, eds. S.L. Nielsen, G.T. Banta, and M.F. Pedersen. Aquatic Ecology Book Series, vol 2. Dordrecht: Springer.

  • French, P.W. 2006. Managed realignment - The developing story of a comparatively new approach to soft engineering. Estuarine, Coastal and Shelf Science 67 (3): 409–423.

    Google Scholar 

  • Hale, S.S., G. Cicchetti, and C.F. Deacutis. 2016. Eutrophication and hypoxia diminish ecosystem functions of benthic communities in a New England estuary. Frontiers in Marine Science 3: 249. https://doi.org/10.3389/fmars.2016.00249.

    Article  Google Scholar 

  • Hall, J.W., P.B. Sayers, M.J.A. Walkden, and M. Panzeri. 2006. Impacts of climate change on coastal flood risk in England and Wales: 2030-2100. Philosophical Transactions of the Royal Society A 364 (1841): 1027–1049.

    Google Scholar 

  • Hanrahan, B.R., J.L. Tank, S.F. Christopher, U.H. Mahl, M.T. Trentman, and T.V. Royer. 2018. Winter cover crops reduce nitrate loss in an agricultural watershed in the central U.S. Agriculture, Ecosystems and Environment 265: 513–523.

    Google Scholar 

  • Hansen, K. 2008. Det Tabte Land – Den store fortælling om magten over det danske landskab (in Danish). Copenhagen: Gads Forlag.

  • Hansen, K. 2014. Folk & fortællinger fra det tabte land – Øerne (in Danish). Klippinge: Forlaget Bæredygtighed.

    Google Scholar 

  • Hansen, L. 2018. Sea level data 1889–2017 from 14 stations in Denmark. DMI Report 18–16.

  • Heyburn, J., P. McKenzie, M.J. Crawley, and D.A. Fornara. 2017. Effects of grassland management on plant C:N:P stoichiometry: Implications for soil element cycling and storage. Ecosphere 8 (10): e01963. https://doi.org/10.1002/ecs2.1963.

    Article  Google Scholar 

  • Hoffmann, C.C., B. Kronvang, and J. Audet. 2011. Evaluation of nutrient retention in four restored Danish riparian wetlands. Hydrobiologia 674 (1): 5–24.

    CAS  Google Scholar 

  • IPCC. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. World Meteorological Organization. Geneva.

  • IPCC. 2019. Summary for policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Geneva.

  • Keller, T., A. Trautner, and J. Arvidsson. 2002. Stress distribution and soil displacement under a rubber-tracked and a wheeled tractor during ploughing, both on-land and within furrows. Soil & Tillage Research 68 (1): 39–47.

    Google Scholar 

  • Kieckbusch, J.J., and J. Schrautzer. 2007. Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Science of the Total Environment 380 (1-3): 3–12.

    CAS  Google Scholar 

  • Kinsman-Costello, L.E., J. O’Brien, and S.K. Hamilton. 2014. Re-flooding a historically drained wetland leads to rapid sediment phosphorus release. Ecosystems 17 (4): 641–656. https://doi.org/10.1007/s10021-014-9748-6.

    Article  CAS  Google Scholar 

  • Koroleff, F. 1983. Determination of phosphorus. In Methods of seawater analysis, ed. K. Grashof, M. Erhardt, and K. Kremling, 125–131. Weinheim: Verlag Chemie.

    Google Scholar 

  • Kraal, P., E.D. Burton, A.L. Rose, B.D. Kocar, R.S. Lockhart, K. Grice, R.T. Bush, E. Tan, and S.M. Webb. 2015. Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary. Chemical Geology 392: 19–31.

    CAS  Google Scholar 

  • Kristensen, E. 1993. Seasonal variations in benthic community metabolism and nitrogen dynamics in a shallow, organic-poor Danish lagoon. Estuarine, Coastal and Shelf Science 36 (6): 565–586.

    CAS  Google Scholar 

  • Kristensen, E., and K. Hansen. 1995. Decay of plant detritus in organic-poor marine sediment: Production rates and stoichiometry of dissolved C and N compounds. Journal of Marine Research 53 (4): 675–702.

    CAS  Google Scholar 

  • Lefcheck, J.S., R.J. Orth, W.C. Dennison, D.J. Wilcox, R.R. Murphy, J. Keisman, C. Gurbisz, M. Hannam, J.B. Landry, K.A. Moore, C.J. Patrick, J. Testa, D.E. Weller, and R.A. Batiuk. 2017. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences 115: 3658–3366.

    Google Scholar 

  • Lehtoranta, J., P. Ekholm, S. Wahlström, P. Tallberg, and R. Uusitalo. 2015. Labile organic carbon regulates phosphorus release from eroded soil transported into anaerobic coastal systems. Ambio 44 (Suppl. 2): S263–S273.

    Google Scholar 

  • Mander, L., L. Marie-Orleach, and M. Elliott. 2013. The value of wader foraging behaviour study to assess the success of restored intertidal areas. Estuarine, Coastal and Shelf Science 131: 1–5.

    Google Scholar 

  • McDowell, R., and L. Condron. 2001. Influence of soil constituents on soil phosphorus sorption and desorption. Communications in Soil Science and Plant Analysis 32 (15-16): 2531–2547.

    CAS  Google Scholar 

  • Meier, H.E.M., A. Höglund, K. Eilola, and E. Almroth-Rosell. 2017. Impact of accelerated future global mean sea level rise on hypoxia in the Baltic Sea. Climate Dynamics 49 (1-2): 163–172.

    Google Scholar 

  • Mohanty, S., A.K. Nayak, A. Kumar, R. Tripathi, M. Shahid, P. Bhattacharyya, R. Raja, and B.B. Panda. 2013. Carbon and nitrogen mineralization kinetics in soil of rice-rice system under long term application of chemical fertilizers and farmyard manure. European Journal of Soil Biology 58: 113–121.

    CAS  Google Scholar 

  • Muhammed, S.E., K. Coleman, L. Wu, V.A. Bell, J.A.C. Davies, J.N. Quinton, E.J. Carnell, S.J. Tomlinson, A.J. Dore, U. Dragosits, P.S. Naden, M.J. Glendining, E. Tipping, and A.P. Whitmore. 2018. Impact of two centuries of intensive agriculture on soil carbon, nitrogen and phosphorus cycling in the UK. Science of the Total Environment 634: 1486–1504.

    CAS  Google Scholar 

  • Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models. Part I — A discussion of principles. Journal of Hydrology 10: 282–290.

    Google Scholar 

  • Øygarden, L., J. Deelstra, A. Lagzdins, M. Bechmann, I. Greipsland, K. Kyllmar, A. Povilaitis, and A. Iital. 2014. Climate change and the potential effects on runoff and nitrogen losses in the Nordic–Baltic region. Agriculture, Ecosystems and Environment 198: 114–126.

    Google Scholar 

  • Paerl, H.W., N.S. Hall, B.L. Peierls, and K.L. Rossignol. 2014. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries and Coasts 37 (2): 243–258.

    Google Scholar 

  • Pétillon, J., S. Potier, A. Carpentier, and A. Garbutt. 2014. Evaluating the success of managed realignment for the restoration of salt marshes: Lessons from invertebrate communities. Ecological Engineering 69: 70–75.

    Google Scholar 

  • Portnoy, J.W., and A.E. Giblin. 1997. Biogeochemical effects of seawater restoration to diked salt marshes. Ecological Applications 7 (3): 1054–1063.

    Google Scholar 

  • Roden, E.E., and J.W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 139: 347–378.

    CAS  Google Scholar 

  • Romanyà, J., and P. Rovira. 2009. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under long-term organic and conventional agriculture. Geoderma 151 (3-4): 378–386.

    Google Scholar 

  • Rupp-Armstrong, S., and R.J. Nicholls. 2007. Coastal and estuarine retreat: A comparison of the application of managed realignment in England and Germany. Journal of Coastal Research 23: 1418–1430.

    Google Scholar 

  • Rysgaard, S., P. Thastum, T. Dalsgaard, P.B. Christensen, and N.P. Sloth. 1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22 (1): 21–30.

    CAS  Google Scholar 

  • Schreiber, C.M., B. Zeng, S. Blossfeld, U. Rascher, M. Kazda, U. Schurr, A. Höltkemeier, and A.J. Kuhn. 2012. Monitoring rhizospheric pH, oxygen, and organic acid dynamics in two short-time flooded plant species. Journal of Plant Nutrition and Soil Science 175 (5): 761–768.

    CAS  Google Scholar 

  • Schuerch, M., T. Spencer, S. Temmerman, M.L. Kirwan, C. Wolff, D. Lincke, C.J. McOwen, M.D. Pickering, R. Reef, A.T. Vafeidis, J. Hinkel, R.J. Nicholls, and S. Brown. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561 (7722): 231–234.

    CAS  Google Scholar 

  • Serpetti, N., U.F.M. Witte, and M.R. Heath. 2016. Statistical modeling of variability in sediment-water nutrient and oxygen fluxes. Frontiers in Earth Science 4: 65. https://doi.org/10.3389/feart.2016.00065.

    Article  Google Scholar 

  • Sjøgaard, K.S., A.H. Treusch, and T.B. Valdemarsen. 2017. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment. Biogeosciences 14 (18): 4375–4389.

    Google Scholar 

  • Smith, S.L., S.E. Cunniff, N.S. Peyronnin, and J.P. Kritzera. 2017. Prioritizing coastal ecosystem stressors in the Northeast United States under increasing climate change. Environmental Science and Policy 78: 49–57.

    Google Scholar 

  • Spencer, K.L., S.J. Carr, L.M. Diggens, J.A. Tempest, M.A. Morris, and G.L. Harvey. 2017. The impact of pre-restoration land-use and disturbance on sediment structure, hydrology and the sediment geochemical environment in restored saltmarshes. Science of the Total Environment 587–588: 47–58.

    Google Scholar 

  • Steinmuller, H.E., K.M. Dittmer, J.R. White, and L.G. Chambers. 2019. Understanding the fate of soil organic matter in submerging coastal wetland soils: A microcosm approach. Geoderma 337: 1267–1277.

    CAS  Google Scholar 

  • Stenak, M. 2005. De inddæmmede landskaber – en historisk geografi (in Danish). Auning: Landbohistorisk Selskab.

    Google Scholar 

  • Stookey, L.L. 1970. Ferrozine - A new spectrophotometric reagent for iron. Analytical Chemistry 42 (7): 779–781.

    CAS  Google Scholar 

  • Thorsen, S.W., E. Kristensen, T. Valdemarsen, M.R. Flindt, C.O. Quintana, and M. Holmer. 2019. Fertilizer-derived N in opportunistic macroalgae after flooding of agricultural land. Marine Ecology Progress Series 616: 37–49.

    CAS  Google Scholar 

  • Tully, K.L., D. Weissman, W.J. Wyner, J. Miller, and T. Jordan. 2019. Soils in transition: Saltwater intrusion alters soil chemistry in agricultural fields. Biogeochemistry 142 (3): 339–356.

    CAS  Google Scholar 

  • Valdemarsen, T., C.O. Quintana, M.R. Flindt, and E. Kristensen. 2015. Organic N and P in eutrophic fjord sediments – Rates of mineralization and consequences for internal nutrient loading. Biogeosciences 12: 1–15.

    Google Scholar 

  • Valdemarsen, T., C.O. Quintana, S.W. Thorsen, and E. Kristensen. 2018. Benthic macrofauna bioturbation and early colonization in newly flooded coastal habitats. PLoS ONE 13 (4): e0196097. https://doi.org/10.1371/journal.pone.0196097.

    Article  CAS  Google Scholar 

  • Vousdoukas, M.I., L. Mentaschi, E. Voukouvalas, A. Bianchi, F. Dottori, and L. Feyen. 2018. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nature Climate Change 8 (9): 776–780.

    Google Scholar 

  • Webster, I.T., S.J. Norquay, F.C. Ross, and R.A. Wooding. 1996. Solute exchange by convection within estuarine sediments. Estuarine, Coastal and Shelf Science 42 (2): 171–183.

    Google Scholar 

  • Wessel, B.M., E. Kristensen, and M.C. Rabenhorst. 2019. Changing tides: Land reclamation and lagoon restoration in Gyldensteen Strand, Denmark, soil science Society of America Annual Meeting, San Diego, CA, January 6–9. Oral.

  • Windolf, J., A. Timmermann, A. Kjeldgaard, J. Bøgestrand, Larsen, S.L., and H. Thodsen. 2013. Landbaseret tilførsel af kvælstof og fosfor til danske fjorde og kystafsnit, 1990–2011 (in Danish). Technical Report no 31 from the Danish National Centre for Environment and Energy (http://dce2.au.dk/pub/TR31.pdf).

  • Wironen, M.B., E.M. Bennett, and J.D. Erickson. 2018. Phosphorus flows and legacy accumulation in an animal-dominated agricultural region from 1925 to 2012. Global Environmental Change 50: 88–99.

    Google Scholar 

  • Wong, S.W., M.J. Barry, A.R. Aldous, N.T. Rudd, H.A. Hendrixson, and C.M. Doehring. 2011. Nutrient release from a recently flooded delta wetland: Comparison of field measurements to laboratory results. Wetlands 31 (2): 433–443.

    Google Scholar 

  • Woodruff, J.D., J.L. Irish, and S.J. Camargo. 2013. Coastal flooding by tropical cyclones and sea-level rise. Nature 504 (7478): 44–52.

    CAS  Google Scholar 

  • Wu, S., Y. Zhao, Y. Chen, X. Dong, M. Wang, and G. Wang. 2019. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization. Science of the Total Environment 657: 1294–1303.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for skillful laboratory assistance by B. Christensen, K.C. Kirkegaard, and R.O. Holm, as well as several engaged students over the years.

Funding

This research was funded by the Aage V. Jensen Nature Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Kristensen.

Additional information

Communicated by Hans W. Paerl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristensen, E., Quintana, C.O., Valdemarsen, T. et al. Nitrogen and Phosphorus Export After Flooding of Agricultural Land by Coastal Managed Realignment. Estuaries and Coasts 44, 657–671 (2021). https://doi.org/10.1007/s12237-020-00785-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00785-2

Keywords

Navigation