Skip to main content
Log in

Influence of Crosslinking on Rheological Properties, Crystallization Behavior and Thermal Stability of Poly(lactic acid)

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, a series of crosslinked poly(lactic acid) (PLA) with different gel fractions were obtained by adding small amounts of bis(tert-butyl dioxy isopropyl) benzene (BIBP) and triallyl isocyanurate (TAIC). The rheological properties, crystallization behavior and thermal stability of all samples were investigated. The results showed that some crosslinked structures were formed according to the gel fraction and the molecular weight. The crosslinked structures were also responsible for the increased modulus and complex viscosity, which extended its processing methods, such as foaming and film blowing. And different relaxation processes were observed for different samples by Han and Cole-Cole plots. Moreover, the results showed that the crosslinked structures played the role of nucleation site for the blends, which enhance the crystallization temperature (Tc). The glass transition temperature (Tg) and melt temperature (Tm) gradually decreased with increasing gel fraction. Crosslinking also had the positive effect on the thermal stability of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Abdolrasouli, G. M. M. Sadeghi, H. Nazockdast, and A. Babaei, Polym. Plast. Technol. Eng., 53, 1417 (2014).

    Article  CAS  Google Scholar 

  2. Y. P. Hao, Y. Li, Z. G. Liu, X. Y. Yan, Y. Tong, and H. L. Zhang, Fiber. Polym., 20, 1766 (2019).

    Article  CAS  Google Scholar 

  3. J. Lunt, Polym. Degrad. Stab., 59, 145 (1998).

    Article  CAS  Google Scholar 

  4. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000).

    Article  CAS  Google Scholar 

  5. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Y. M. Zhao, Z. Y. Wang, J. Wang, H. Z. Mai, B. Yan, and F. Yang, J. Appl. Polym. Sci., 91, 2143 (2004).

    Article  CAS  Google Scholar 

  7. K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol., 101, 8493 (2010).

    Article  CAS  Google Scholar 

  8. M. Okamoto and B. John, Prog. Polym. Sci., 38, 1487 (2013).

    Article  CAS  Google Scholar 

  9. S. Saeidlou, M. A. Huneault, H. B. Li, and C. B. Park, Prog. Polym. Sci., 37, 1657 (2012).

    Article  CAS  Google Scholar 

  10. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci., 35, 338 (2010).

    Article  CAS  Google Scholar 

  11. V. P. Martinom, A. Jiménez, R. A. Ruseckaite, and L. Avérous, Polym. Adv. Technol., 22, 2213 (2011).

    Google Scholar 

  12. M. P. Arrieta, J. López, S. Ferrándiz, and M. A. Peltzer, Polym. Test., 32, 760 (2013).

    Article  CAS  Google Scholar 

  13. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000).

    Article  CAS  Google Scholar 

  14. Q. Fang and M. A. Hanna, Ind. Crops. Prod., 13, 219 (2001).

    Article  CAS  Google Scholar 

  15. D. J. Garlotta, J. Polym. Environ., 9, 84 (2001).

    Article  Google Scholar 

  16. A. Bandyopadhyay and G. C. Basak, Mater. Sci. Technol., 23, 307 (2007).

    Article  CAS  Google Scholar 

  17. L. T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci., 33, 852 (2008).

    Article  CAS  Google Scholar 

  18. T. Standau, C. J. Zhao, S. Murillo Castellón, C. Bonten, and V. Altstädt, Polymers, 11, 306 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  19. N. Najafi, M.C. Heuzey, P. J. Carreau, D. Therriault, and C. B. Park, Rheol. Acta, 53, 779 (2014).

    Article  CAS  Google Scholar 

  20. Y. M. Corre, J. Duchet, J. Reignier, and A. Maazouz, Rheol. Acta, 50, 613 (2011).

    Article  CAS  Google Scholar 

  21. K. M. Dean, E. Petinakis, S. Meure, L. Yu, and A. Chryss, J. Polym. Environ., 20, 741 (2012).

    Article  CAS  Google Scholar 

  22. Y. Huang, C. Zhang, Y. Pan, W. Wang, L. Jiang, and Y. Dan, J. Polym. Environ., 21, 375 (2013).

    Article  CAS  Google Scholar 

  23. P. Rytlewski, M. Zenkiewicz, and R. Malinowski, Int. Polym. Process., 26, 580 (2011).

    Article  CAS  Google Scholar 

  24. L. Yu, G. Toikka, K. Dean, S. Bateman, Q. Yuan, C. Filippou, and T. Nguyen, Polym. Int., 62, 759 (2013).

    Article  CAS  Google Scholar 

  25. S. Göttermann, T. Standau, S. Weinmann, V. Altstädt, and C. Bonten, Polym. Eng. Sci., 57, 1242 (2017).

    Google Scholar 

  26. L. Wei and A. G. McDonald, J. Appl. Polym. Sci., 132, 41724 (2015).

    Google Scholar 

  27. M. Takamura, T. Nakamura, T. Takahashi, and K. Koyama, Polym. Degrad. Stab., 93, 1909 (2008).

    Article  CAS  Google Scholar 

  28. A. Thitithammawong, C. Nakason, K. Sahakaro, and J. Noordermeer, Polym. Test., 26, 537 (2007).

    Article  CAS  Google Scholar 

  29. D. Carlson, P. Dubois, L. Nie, and R. Narayan, Polym. Eng. Sci., 38, 311 (1998).

    Article  CAS  Google Scholar 

  30. F. Signori, A. Boggioni, M. C. Righetti, C. E. Rondán, S. Bronco, and F. Ciardelli, Macromol. Mater. Eng., 300, 153 (2015).

    Article  CAS  Google Scholar 

  31. J. Liu, L. Lou, W. Yu, R. Liao, R. Li, and C. Zhou, Polymer, 51, 5186 (2010).

    Article  CAS  Google Scholar 

  32. J. You, L. Lou, W. Yu, and C. Zhou, J. Appl. Polym. Sci., 129, 1959 (2013).

    Article  CAS  Google Scholar 

  33. A. J. Nijienhuis, D. W. Grijpma, and A. J. Pennings, Polymer, 37, 2783 (1996).

    Article  Google Scholar 

  34. S. Yang, Z. H. Wu, W. Yang, and M. B. Yang, Polym. Test., 27, 957 (2008).

    Article  CAS  Google Scholar 

  35. M. Shayan, H. Azizi, I. Ghasemi, and M. Karrabi, J. Polym. Res., 26, 238 (2019).

    Article  CAS  Google Scholar 

  36. K. Dawidziuk, H. Simmons, M. Kontopoulou, and S. J. Parent, Polymer, 158, 254 (2018).

    Article  CAS  Google Scholar 

  37. Z. Su, Q. Li, Y. Liu, G. Hu, and C. Wu, Eur. Polym. J., 45, 2428 (2009).

    Article  CAS  Google Scholar 

  38. D. F. Wu, L. Wu, M. Zhang, and Y. L. Zhao, Polym. Degrad. Stabil., 93, 1577 (2008).

    Article  CAS  Google Scholar 

  39. D. J. Kim, W. S. Kim, D. H. Lee, K. E. Min, L. S. Park, I. K. Kang, I. R. Jeon, and K. H. Seo, J. Appl. Polym. Sci., 81, 1115 (2001).

    Article  CAS  Google Scholar 

  40. M. Nofar, W. L. Zhu, C. B. Park, and J. Randall, Ind. Eng. Chem. Res., 50, 13789 (2011).

    Article  CAS  Google Scholar 

  41. D. Y. Ji, Z. Y. Liu, X. R. Lan, F. Wu, B. H. Xie, and M. B. Yang, J. Appl. Polym. Sci., 131, 39580 (2014).

    Google Scholar 

  42. T. M. Quynh, H. Mitomo, N. Nagasawa, Y. Wada, F. Yoshii, and M. Tamada, Eur. Polym. J., 43, 1779 (2007).

    Article  CAS  Google Scholar 

  43. T. M. Quynh, H. Mitomo, L. Zhao, and S. Asai, Carbohydr. Polym., 72, 673 (2008).

    Article  CAS  Google Scholar 

  44. F. Z. Jin, S. H. Hyon, H. Iwata, and S. Tsutsumi, Macromol. Rapid. Commun., 23, 909 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchi Tian.

Ethics declarations

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Chen, J., Wang, F. et al. Influence of Crosslinking on Rheological Properties, Crystallization Behavior and Thermal Stability of Poly(lactic acid). Fibers Polym 23, 1763–1769 (2022). https://doi.org/10.1007/s12221-022-4857-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4857-x

Keywords

Navigation