Skip to main content
Log in

Progressive Damage Modelling of Composite Laminates Under Low Velocity Impact Based on MCT Criterion

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to study the damage mechanism of carbon fiber composite laminates, an experimental and numerical investigation has been carried out to study the dynamic perforation behaviors of composite plates subjected to low velocity impact. The numerical simulations of the progressive damage process for different plates under different impact energies are based on the Multi-Continuum Theory (MCT). 3D FE models with cohesive ply element was established, and the failure processes of the matrix component and the fiber component in the laminates were individually simulated based on MCT failure criterion. By introducing two parameters, the penetration limit and the perforation limit, the damage process of each plate was showed in the form of Energy profile diagram (EPD) which was used to compare the impact resistance abilities of three kinds of composite plates The simulation results were in good agreement with the experimental results. The results revealed that there is a greatest impact resistance in mixed lay-up plate. Compared to the 0-degree plates and the orthotropic plates, the damage strength of the mixed lay-up plate has increased by 252 % and 120 % respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Li, L. Sun, and D. Chen, Fiber. Polym., 20, 129 (2019).

    Article  CAS  Google Scholar 

  2. M. M. Sisan and R. Eslami-Farsani, Fiber Polym., 20(10), 2200 (2019).

    Article  CAS  Google Scholar 

  3. G. A. Davies, X. Zhang, G. Zhou, and S. Watson, Composites, 25, 342 (1994).

    Article  Google Scholar 

  4. M. F. De Moura and J. P. Gonçalves, Compos. Sci. Technol., 64, 1021 (2004).

    Article  CAS  Google Scholar 

  5. V. Tita, J. De Carvalho, and D. Vandepitte, Compos. Struct., 83, 413 (2008).

    Article  Google Scholar 

  6. R. Tiberkak, M. Bachene, S. Rechak, and B. Necib, Compos. Struct., 83, 73 (2008).

    Article  Google Scholar 

  7. D. Ivančević and I. Smojver, Compos. Struct., 145, 248 (2016).

    Article  Google Scholar 

  8. S. H. Song, Y. S. Byun, T. W. Ku, W. J. Song, J. Kim, and B. S. Kang, J. Mater. Sci. Technol., 26, 327 (2010).

    Article  CAS  Google Scholar 

  9. A. Gliszczynski, T. Kubiak, and K. Wawer, Compos. Part B-Eng., 158, 10 (2019).

    Article  CAS  Google Scholar 

  10. A. Gliszczynski, Compos. Part B-Eng., 138, 181 (2018).

    Article  CAS  Google Scholar 

  11. L. Xiao, G. Wang, S. Qiu, Z. Han, X. Li, and D. Zhang, Compos. Part B-Eng., 165, 247 (2019).

    Article  CAS  Google Scholar 

  12. S. K. Bhudolia, S. C. Joshi, A. Bert, G. R. Gohel, and M. Raama, Fiber. Polym., 20, 1716 (2019).

    Article  CAS  Google Scholar 

  13. W. He, Z. Guan, X. Li, and D. Liu, Compos. Struct., 96, 232 (2013).

    Article  Google Scholar 

  14. G. C. Yu, L. Z. Wu, L. Ma, and J. Xiong, Compos. Struct., 119, 757 (2015).

    Article  Google Scholar 

  15. F. Ahmad, J. W. Hong, H. S. Choi, and M. K. Park, Compos. Struct., 135, 276 (2016).

    Article  Google Scholar 

  16. B. B. Liao and P. F. Liu, Compos. Struct., 159, 567 (2017).

    Article  Google Scholar 

  17. C. Zhang, E. A. Duodu, and J. Gu, Compos. Struct., 173, 219 (2017).

    Article  Google Scholar 

  18. Y. Hou, Y. Tie, C. Li, T. Sapanathan, and M. Rachik, Compos. Part B-Eng., 163, 669 (2019).

    Article  CAS  Google Scholar 

  19. H. Debski, P. Rozylo, and A. Gliszczynski, Compos. Struct., 184, 883 (2018).

    Article  Google Scholar 

  20. A. Kurşun, M. Şenel, and H. M. Enginsoy, Adv. Eng. Softw., 90, 41 (2015).

    Article  Google Scholar 

  21. H. Tuo, Z. Lu, X. Ma, C. Zhang, and S. Chen, Compos. Part B-Eng., 167, 329 (2019).

    Article  CAS  Google Scholar 

  22. X. Niu, W. F. Pan, and Y. Li, Arch. Appl. Mech., 88, 2283 (2018).

    Article  Google Scholar 

  23. N. T. Chowdhury, J. Wang, W. K. Chiu, and W. Yan, Compos. Struct., 137, 148 (2016).

    Article  Google Scholar 

Download references

Acknowledgment

Financial support from Natural Science Foundation of Tianjin City (CN) (No: 18JCYBJC89000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejuan Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Zhang, Z. & Chen, J. Progressive Damage Modelling of Composite Laminates Under Low Velocity Impact Based on MCT Criterion. Fibers Polym 22, 1623–1632 (2021). https://doi.org/10.1007/s12221-021-2033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-2033-y

Keywords

Navigation