Skip to main content

Advertisement

Log in

A Progressive Damage Model for Predicting Permanent Indentation and Impact Damage in Composite Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. AC20-107B. Composite Aircraft Structures. Federal Aviation Administration, 2009. 11–14

  2. Pinho, S.T., Iannucci, L., Robinson, P.: Physically-based failure models and criteria for laminated fiber-reinforced composite with emphasis on fibre kinking. Part II: FE implementation. Comps Appl Sci Manuf 37, 767–777 (2006)

    Google Scholar 

  3. Falzon, B.G., Apruzzese, P.: Numerical analysis of intralaminar failure mechanisms in composite structures. Part I: FE implementation. Compos Struct 93, 1039–1046 (2011)

    Article  Google Scholar 

  4. Falzon, B.G., Apruzzese, P.: Numerical analysis of intralaminar failure mechanisms in composite structures. Part II: Applications. Compos Struct 93, 1047–1053 (2011)

    Article  Google Scholar 

  5. Maimí P, Camanho PP, Mayugo JA, Dávila CG. A thermodynamically consistent damage model for advanced composites. Hampton, Virginia: Langley Research Center, National Aeronautic and Space Administration (NASA); 2006. Report No: NASA/TM-2006-214282

  6. Hashin, Z.: Failure criteria for unidirectional fiber composites. J App Mech 47, 329–334 (1980)

    Article  Google Scholar 

  7. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58, 1045–1067 (1998)

    Article  Google Scholar 

  8. Pinho ST, Dávila CG, Camanho PP, Iannucci L, Robinson P. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. Hampton, Virginia: Langley Research Center, National Aeronautic and Space Administration (NASA); 2005. Report No: NASA/TM-2005-213530

  9. Raimondo, L., Iannucci, L., Robinson, P., Curtis, P.T.: A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage. Compos Sci Technol 72, 624–632 (2012)

    Article  Google Scholar 

  10. Feng, W.W., Reifsnider, K.I., Sendeckyj, G.P.: Hahn. HT. A mixed-mode fracture criterion for composite materials. J Compos Technol Res 5, 26–29 (1985)

    Article  Google Scholar 

  11. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56, 439–449 (1996)

    Article  Google Scholar 

  12. Aymerich, F., Dore, F., Priolo, P.: Simulation of multiple delaminations in cross-ply composite laminates using a finite element model based on cohesive interface elements. Compos Sci Technol 69, 1699–1709 (2009)

    Article  Google Scholar 

  13. Shi, Y., Swait, T., Soutis, C.: Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct 94, 2902–2913 (2012)

    Article  Google Scholar 

  14. Kim, E.H., Rim, M.S., Lee, I., Hwang, T.K.: Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Compos Struct 95, 123–134 (2013)

    Article  Google Scholar 

  15. Singh, H., Mahajan, P.: Modeling damage induced plasticity for low velocity impact simulation of three dimensional fiber reinforced composite. Compos Struct 131, 290–303 (2015)

    Article  Google Scholar 

  16. Donadon, M.V., Iannucci, L., Falzon, B.G., Hodgkinson, J.M., Almeida, S.F.M.: A progressive failure model for composite laminates subjected to low velovity impact damage. Comput Struct 86, 1232–1252 (2008)

    Article  Google Scholar 

  17. Feng, D., Aymerich, F.: Finite element modelling of damage induced by low-velocity impact on composite laminates. Compos Struct 108, 161–171 (2014)

    Article  Google Scholar 

  18. Tan, W., Falzon, B.G., Chiu, L.N.S., Price, M.: Predicting low velocity impact damage and compression-after-impact (CAI) behavior of composite laminates. Comps Appl Sci Manuf 71, 212–226 (2015)

    Article  Google Scholar 

  19. Yu, F., Chen, X., Zhang, A., Zhou, C.: Application of modified cohesive zone damage model in damage simulation of composite laminates subject to low-velocity impact. Acta Materiae Compositae Sinica 32(6), 1745–1753 (2015) [in Chinese]

    Google Scholar 

  20. Choi, H.Y., Downs, R.J., Chang, F.K.: A new approach toward understanding damage mechanisms and mechanic of laminated composites due to low-velocity impact: Part I—Experiments. J Comos Mater 25, 992–1011 (1991)

    Article  Google Scholar 

  21. Choi, H.Y., Downs, R.J., Chang, F.K.: A new approach toward understanding damage mechanisms and mechanic of laminated composites due to low-velocity impact: Part II—Analysis. J Comos Mater 25, 1012–1038 (1991)

    Article  Google Scholar 

  22. Topac OT, Gozluklu B, Gurses E, Coker D. Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact. Comps Appl Sci Manuf (2016)

  23. Fanteria, D., Longo, G., Panettieri, E.: A non-linear shear damage model to reproduce indentation caused by impacts in composite laminates. Compos Struct 111, 111–121 (2014)

    Article  Google Scholar 

  24. Lopes, C.S., Camanho, P.P., Gürdal, Z., Maimí, P., González: Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Compos Sci Technol 69, 937–947 (2009)

    Article  Google Scholar 

  25. Faggiani, A., Falzon, B.G.: Predicting low-velocity impact damage on a stiffened composite panel. Comps Appl Sci Manuf 41, 737–749 (2010)

    Article  Google Scholar 

  26. Bouvet, C., Rivallant, S., Barrau, J.J.: Low velocity impact modeling in composite laminates capturing permanent indentation. Compos Sci Technol 72, 1977–1988 (2012)

    Article  Google Scholar 

  27. Hongkarnjanakul, N., Rivallant, S., Bouvet, C., Miranda, A.: Permanent indentation characterization for low-velocity impact modelling using three-point bending test. J Comos Mater 48, 2441–2454 (2014)

    Article  Google Scholar 

  28. He, W., Guan, Z., Li, X., Liu, D.: Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure. Compos Struct 96, 232–242 (2013)

    Article  Google Scholar 

  29. Hahan, H.T., Tsai, S.W.: Nonlinear elastic behavior of unidirectional composite laminae. J Comos Mater 7, 102–118 (1973)

    Article  Google Scholar 

  30. Camanho, P.P., Dávila, C.G., Pinho, S.T., Iannucci, L., Robinson, P.: Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Comps Appl Sci Manuf 37, 165–176 (2006)

    Article  Google Scholar 

  31. Pinho, S.T., Darvizeh, R., Robinson, P., Schuecker, C., Camanho, P.P.: Material and structural response of polymer-matrix fibre-reinforced composites. J Comos Mater 46, 2313–2341 (2012)

    Article  Google Scholar 

  32. Shen, Z., Yang, S., Chen, P.: Experimental study on the behavior and characterization methods of composite laminates to with stand impact. Acta Materiae Compositae Sinica 25(5), 125–133 (2008) [in Chinese]

    Google Scholar 

  33. Guan, Z., He, W., Chen, J., Liu, L.: Permanent indentation and damage creation of laminates with different composite systems: an experimental investigation. Poly Mater 35, 872–883 (2014)

    Google Scholar 

  34. Guan, Z., Zhao, W.: FC impact testing machine and the research of low velocity impact damage of T300/QY8911 composite plates. Acta Materiae Compositae Sinica 22, 27–31 (2005) [in Chinese]

    Google Scholar 

  35. ASTM D7136/D7136M-15. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. West Conshohocken, PA, USA: American Society for Testing and Materials (ASTM) 2015

  36. González, E.V., Maimí, P., Camanho, P.P., Turon, A., Mayugo, G.A.: Simulation of drop-weight impact and compression after impact tests on composite laminates. Compos Struct 94, 3364–3378 (2012)

    Article  Google Scholar 

  37. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Lamina properties lay-up configurations and loading conditions for a range of fiber-reinforced composite laminates. Compos Sci Technol 58, 1011–1022 (1998)

    Article  Google Scholar 

  38. Shoeppner, G.A., Abrate, S.: Delamination threshold loads for low velocity impact on composite laminates. Comps Appl Sci Manuf 31, 903–915 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Guan, Z. & Li, Z. A Progressive Damage Model for Predicting Permanent Indentation and Impact Damage in Composite Laminates. Appl Compos Mater 24, 1029–1048 (2017). https://doi.org/10.1007/s10443-016-9572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9572-6

Keywords

Navigation