Skip to main content
Log in

Development and Study of Biodegradability of Euphorbia Coagulum Modified Polyester Composite Reinforced with Bamboo Fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, bamboo fiber reinforced euphorbia coagulum modified polyester resin based bio composites were prepared using a compression molding technique. Biodegradability studies of the composites were carried out using microbial growth by inoculation method. Weight loss of biodegraded composite was analyzed at different time intervals. FTIR and NMR results revealed the presence of unsaturation in euphorbia coagulum which helps in cross-linking during composite development. The presence of euphorbia coagulum accelerates the rate of degradation of the composite due to the formation of holes and cavities in the composite that can be confirmed by the surface morphology of degraded composite. FTIR results also confirmed the fastest degradation of euphorbia coagulum based composite as compared to without coagulum based composite. It was found that the addition of 30% euphorbia coagulum in polyester resin-bamboo fiber composites enhanced the degradation up to 40% after 90 days of biodegradability studies. This work gives us the idea of replacement of conventionally used polymer with the natural polymer to prepare composite that can be discarded carelessly in the environment instead of proper waste disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gomes, K. Goda, and J. Ohgi, JSME — International Journal, Series A, 47, 541 (2004).

    Article  CAS  Google Scholar 

  2. K. G. Satyanarayana, G. G. C. Arizaga, and F. Wypych, Prog. Polym. Sci., 34, 982 (2009).

    Article  CAS  Google Scholar 

  3. H. M. Kawade, N. G. Narve, and Mundhe, Int. J. Eng. Sci. Res. Technol., 3, 410 (2018).

    Google Scholar 

  4. S. Muniyasamy, A. Anstey, M. M. Reddy, M. Misra, and A. Mohanty, J. Renewable Mater., 1, 253 (2013).

    Article  Google Scholar 

  5. R. Rohit, S. Chokshi, and V. Chaudhary, Int. J. Eng. Technol. Sci. Res., 4, 680 (2017).

    Google Scholar 

  6. S. Mohanty and S. K. Nayak, J. Reinf. Plast. Compos., 29, 2199 (2010).

    Article  CAS  Google Scholar 

  7. S. H. Lee and T. Ohkita, Holzforschung., 58, 537 (2004).

    Article  CAS  Google Scholar 

  8. T. Ohkita and S. H. Lee, J. Adhes. Sci. Technol., 18, 905 (2004).

    Article  CAS  Google Scholar 

  9. T. Ohkita and S. H. Lee, J. Appl. Polym. Sci., 97, 1107 (2005).

    Article  CAS  Google Scholar 

  10. Ö. Demircan, K. Kadıoğlu, P. Çolak, E. Günaydın, M. Doğu, N. Topalömer, and V. Eskizeybek, Fiber. Polym., 21, 1824 (2020).

    Article  CAS  Google Scholar 

  11. D. D. Stokke, Q. Wu, and G. Han, “Introduction to Wood and Natural Fiber Composites”, John Wiley & Sons, West Sussex, UK, 2014.

    Google Scholar 

  12. T. Vaisanen, O. Das, and L. Tomppo, J. Cleaner Prod., 149, 582 (2017).

    Article  CAS  Google Scholar 

  13. P. R. Oliveira, J. C. dos Santos, S. L. M. Ribeiro Filho, B. T. Ferreira, T. H. Panzera, and F. Scarpa, Fiber. Polym., 21, 1798 (2020).

    Article  CAS  Google Scholar 

  14. J. Sahari and S. M. Sapuan, Rev. Adv. Mater. Sci., 30, 166 (2011).

    Google Scholar 

  15. S. M. Sapuan and M. A. Maleque, Mater. Des., 26, 65 (2005).

    Article  CAS  Google Scholar 

  16. Z. Leman, S. M. Sapuan, A. M. Saifol, M. A. Maleque, and M. M. H. M. Ahmad, Mater. Des., 29, 1666 (2008).

    Article  CAS  Google Scholar 

  17. E. S. Zainudin, S. M. Sapuan, K. Abdan, and M. T. M. Mohamad, Polym. Polym. Compos., 17, 55 (2009).

    CAS  Google Scholar 

  18. Y. Choi, S. Maken, S. Lee, E. Chung, J. Park, and Byoungryul, Korean J. Chem. Eng., 24, 288 (2007).

    Article  CAS  Google Scholar 

  19. L. Ranakoti, M. Pokhriyal, and A. Kumar, J. Mech. Eng., 68, 33 (2018).

    Google Scholar 

  20. Y. El-Shekeil, S. Sapuan, K. Abdan, and E. Zainudin, Mater. Des., 40, 299 (2012).

    Article  CAS  Google Scholar 

  21. X. Y. Ma, J. G. Yu, and J. F. Kennedy, Carbohydr. Polym., 62, 19 (2005).

    Article  CAS  Google Scholar 

  22. L. Averous and N. Boquillon, Carbohydr. Polym., 56, 11 (2004).

    Article  CAS  Google Scholar 

  23. N. Soykeabkaew, P. Supaphol, and R. Rujiravanit, Carbohydr. Polym., 58, 53 (2004).

    Article  CAS  Google Scholar 

  24. V. Tserki, P. Matzinos, N. E. Zafeiropoulos, and C. Panayiotou, J. Appl. Polym. Sci., 100, 4703 (2006).

    Article  CAS  Google Scholar 

  25. S. Alex, S. Jone, Ramchandran, and M. Retnam, Int. J. Appl. Eng. Res., 10, 10565 (2015).

    Google Scholar 

  26. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Compos. Part A-Appl. Sci. Manuf., 35, 371 (2004).

    Article  CAS  Google Scholar 

  27. I. Gulati, J. Park, S. Maken, and M. G. Lee, Fiber. Polym., 15, 680 (2014).

    Article  CAS  Google Scholar 

  28. I. Kaushal, S. Maken, and A. K. Sharma, Korean Chem. Eng. Res., 56, 694 (2018).

    CAS  Google Scholar 

  29. M. Tuttle, “Introduction in Structural Analysis of Polymeric Composite Materials”, University of Washington, 2004.

  30. H. Y. Lee, H. Cruz, and Y. Son, J. Compos. Mater., 53, 1291 (2018).

    Article  CAS  Google Scholar 

  31. S. Haghdan and G. D. Smith, J. Reinf. Plast. Compos., 34, 1179 (2015).

    Article  CAS  Google Scholar 

  32. A. Kumar, A. Mohan, R. K. Diwan, and R. K. Khandal, J. Polym. Mater., 25, 199 (2008).

    Google Scholar 

  33. M. H. Jee and D. H. Baik, Fiber. Polym., 19, 561 (2018).

    Article  CAS  Google Scholar 

  34. M. Davallo, H. Pasdar, and M. Mohseni, Int. J. ChemTech Res., 2, 2113 (2010).

    CAS  Google Scholar 

  35. S. Kumari, R. Kumar, B. Rai, S. Sirohi, and G. Kumar, J. Compos. Mater., 54, 3473 (2020).

    Article  CAS  Google Scholar 

  36. S. Kumari, R. Kumar, B. Rai, and G. Kumar, Int. J. Mater. Res. Exp., 6, 125341 (2019).

    Article  CAS  Google Scholar 

  37. L. Shukla, A. Senapati, S. Tyagi, and A. Saxena, Current Sci., 107, 1701 (2014).

    CAS  Google Scholar 

  38. L. Shukla, A. Suman, P. Verma, A. N. Yadav, and A. K. Saxena, J. Appl. Biol. Biotechnol., 4, 30 (2016).

    CAS  Google Scholar 

  39. L. L. Jesus, L. M. S. Murakami, T. de Souza, D. Mello, M. F. Diniz, L. M. Silva, E. da Costa Mattos, and R. de Cássia Lazzarini Dutra, J. Aerospace Technol. Manag., 11, e2019 (2019).

    Google Scholar 

  40. G. Cao, Y. Yan, X. Zou, R. Zhu, and F. Ouyang, Spectral Analysis Reviews, 6, 12 (2018).

    Article  CAS  Google Scholar 

  41. G. Mir Mohammad Sadeghi, J. Morshedian, and M. Barikani, Polym. Test., 22, 165 (2003).

    Article  Google Scholar 

  42. I. M. Rania Almoselhy, H. Magda Allam, M. H. El-Kalyoubi, and A. A. El-Sharkawy, Ann. Agr. Sci., 59, 201 (2014).

    Article  Google Scholar 

  43. E. Tagliavini, F. Moretti, S. Decesari, M. C. Facchini, S. Fuzzi, and W. Maenhaut, Atmos. Chem. Phys., 6, 1003 (2006).

    Article  CAS  Google Scholar 

  44. G. Stamatakis, U. Knuutinen, K. Laitinen, and A. Spyros, Anal. Bioanal. Chem., 398, 3203 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. P. Gałka, J. Kowalonek, and H. Kaczmarek, J. Therm. Anal. Calorim., 115, 1387 (2014).

    Article  CAS  Google Scholar 

  46. V. Rao and J. Johns, J. Therm. Anal. Calorim., 92, 801 (2008).

    Article  CAS  Google Scholar 

  47. X. Cao, A. Mohamed, S. H. Gordon, J. L. Willett, and D. J. Sessa, Thermochimica Acta, 406, 115 (2003).

    Article  CAS  Google Scholar 

  48. M. Sunilkumar, T. Francis, E. T. Thachil, and A. Sujith, J. Chem. Eng., 204, 114 (2012).

    Article  CAS  Google Scholar 

  49. T. Kittikorn, S. Kongsuwan, and R. Malakul, J. Metals, Materials and Minerals., 27, 23 (2017).

    CAS  Google Scholar 

  50. M.-D. Stelescu, E. Manaila, G. Craciun, and C. Chirila, Materials, 10, 787 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  51. M. H. Jee and D. H. Baik, Fiber. Polym., 19, 561 (2018).

    Article  CAS  Google Scholar 

  52. V. R. Lilian Beltrami, J. A. V. Bandeira, L. C. Scienza, and A. J. Zattera, J. Appl. Polym. Sci., 131, 40712 (2014).

    Google Scholar 

Download references

Acknowledgement

The author would like to thanks Guru Gobind Singh Indraprastha University, New Delhi, India for providing the necessary facilities required during the course of the investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulshan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Kumar, R., Rai, B. et al. Development and Study of Biodegradability of Euphorbia Coagulum Modified Polyester Composite Reinforced with Bamboo Fiber. Fibers Polym 22, 2581–2587 (2021). https://doi.org/10.1007/s12221-021-0203-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0203-y

Keywords

Navigation