Skip to main content
Log in

Synthesis and characterization of new polyamides containing symmetrical and unsymmetrical thiadiazole rings

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Diamino derivatives of thiadiazole namely, 2,5-diamino-1,3,4-thiadiazole and 3,5-diamino-1,2,4-thiadiazole were synthesized and characterized. Polyamides were synthesized by condensation of the two diamino derivatives with diacide chlorides. The structures of polyamides were verified by elemental analysis, FTIR, 1H-NMR, 13C-NMR and mass spectroscopy. The polyamides possess good solubility in aprotic organic solvents such as DMF, DMAC, DMSO and NMP at room temperature. Intrinsic viscosity measurements indicate that the polyamides synthesized have moderate molecular weights. The thermal stability of these polyamides in nitrogen atmosphere is relatively good, especially for those polyamides containing phenylene ring in the backbone. Compared to the structurally related Kevlar aramide, using 2,5-diamino-1,3,4-thiadiazole and 3,5-diamino-1,2,4-thiadiazole instead of p-phenylene diamine results in reducing the melting points of polyamides to below 350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Lin, M. Y. Zhang, M. L. Li, and T. B. Wei, Synth. Commun., 42, 3251 (2012).

    Article  CAS  Google Scholar 

  2. F. V. Zaitseva, A. V. Karchava, and K. G. Soedinenii, “Chemistry of Heterocyclic Compounds”, Mir Publisher, Moscow, 2004.

    Google Scholar 

  3. Z. M. Li, G. Zhang, D. S. Li, and J. Yang, Chinese J. Polym. Sci., 32, 292 (2014).

    Article  CAS  Google Scholar 

  4. B. Gunduz, N. Turan, and E. Kaya, Polym. Bull., 71, 2945 (2014).

    Article  CAS  Google Scholar 

  5. M. M. Fahmy, R. F. Al-Ghamdi, and N. A. Mohamed, Polym. Bull., 66, 609 (2011).

    Article  CAS  Google Scholar 

  6. E. Rostami, A. Shockravi, S. M. Ataei, M. Ghaedi, and M. Zangooei, Nano Sci. Nano Technol., 6, 123 (2012).

    CAS  Google Scholar 

  7. A. S. More, S. K. Pasale, and P. P. Wadgaonkar, Eur. Polym. J., 46, 557 (2010).

    Article  CAS  Google Scholar 

  8. H. R. Kricheldrof, B. Schmidt, and R. Burger, Macromolecules, 20, 5465 (1992).

    Article  Google Scholar 

  9. H. R. Kricheldrof and B. Schmidt, Macromolecules, 20, 5471 (1992).

    Article  Google Scholar 

  10. Y. Hu and L. Ye, Polymer Plast. Tech. Eng., 45, 839 (2006).

    Article  CAS  Google Scholar 

  11. M. Ghaemy and M. Barghamadi, J. Appl. Polym. Sci., 114, 3464 (2009).

    Article  CAS  Google Scholar 

  12. S. Mallakpour and E. Kowsari, Polym. Eng. Sci., 10, 558 (2006).

    Article  Google Scholar 

  13. A. O. Joshua, F. A. Johnson, and A. A. Matthew, Molecules, 16, 5861 (2011).

    Article  Google Scholar 

  14. T. V. Melenchuk, E. A. Danilova, M. G. Stryapan, and M. K. Islyaikin, Russian J. Gen. Chem., 78, 480 (2008).

    Article  CAS  Google Scholar 

  15. S. L. Kwolek, U. S. Patent, 30352 (1980).

    Google Scholar 

  16. O. H. Schönherr, J. W. Wendorff, H. Ringsdorf, and P. Tachirner, Makromol. Chem. Rapid Commun., 7, 791 (1986).

    Article  Google Scholar 

  17. H. Ringsdorf, P. Tachirner, S. O. Hermann, and J. W. Wendorff, Makromol. Chem., 188, 1431 (1987).

    Article  CAS  Google Scholar 

  18. M. Ballauff and G. F. Schmidt, Makromol. Chem. Rapid Commun., 8, 93 (1987).

    Article  CAS  Google Scholar 

  19. M. Ballauff, Makromol. Chem. Macromol. Symp., 26, 57 (1989).

    Article  CAS  Google Scholar 

  20. J. Y. Jadhav, J. Preston, and W. R. Krigbaum, J. Polym. Sci. Pol. Chem., 27, 1175 (1989).

    Article  CAS  Google Scholar 

  21. W. Hatke, H. W. Schmidt, and W. J. Heitz, J. Polym. Sci. Polym. Chem., 29, 1387 (1991).

    Article  CAS  Google Scholar 

  22. J. Song, U. S. Patent, 3033901 (1962).

    Google Scholar 

  23. M. Mashima, Bull. Chem. Soc. Japan, 37, 974 (1964).

    Article  CAS  Google Scholar 

  24. J. A. Obaleye, J. F. Adediji, and M. A. Adebayo, Molecules, 16, 5861 (2011).

    Article  CAS  Google Scholar 

  25. P. W. Morgan and S. L. Kwolek, J. Polym. Sci., 40, 299 (1959).

    Article  CAS  Google Scholar 

  26. X. Y. Li and A. F. Yee, Macromolecules, 36, 9421 (2003).

    Article  CAS  Google Scholar 

  27. O. Monticelli, R. Mendichi, S. Bisbano, A. Mariani, and S. Russo, Macromol. Chem. Phys., 201, 2123 (2000).

    Article  CAS  Google Scholar 

  28. M. Lewin and J. Preston in “Handbook of Fiber Science and Technology” (M. Lewin and J. Preston Eds.), Vol. III, p.109, Marcel Dekker, New York, 1993.

  29. S. Torgova, T. Geivandova, O. Francescangeli, and A. Strigazzi, Pranama-J. Phys., 61, 239 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar H. Al-Dujaili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweileh, B.A., Khalili, F.I., Hamadneh, I. et al. Synthesis and characterization of new polyamides containing symmetrical and unsymmetrical thiadiazole rings. Fibers Polym 17, 166–173 (2016). https://doi.org/10.1007/s12221-016-5400-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5400-8

Keywords

Navigation