Skip to main content
Log in

The effect of tube dimensions on optimized pressure and force loading paths in tube hydroforming process

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The precise control of internal pressure and axial force loading paths significantly affects the final product quality. In this study, the effect of tube dimensions on the pressure and force loading paths in tube hydroforming process is investigated by using simulated annealing optimization method linked to a commercial finite element code. The optimized loading paths, obtained for different tube geometries with a constant expansion ratio, are then compared. The effects of initial diameter and wall thickness on shape conformation, optimal internal pressure and axial force (or feed) are discussed on the basis of optimal loading paths. Several guidelines in prediction and determination of tube hydroforming parameters are obtained by optimization analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Koc and T. Altan, Prediction of forming limits and parameters in the tube hydroforming process, International Journal of Machine Tools and Manufacture, 42 (2002) 123–138.

    Article  Google Scholar 

  2. K. Manabe and M. Amino, Effects of process parameters and material properties on deformation process in tube hydroforming, Journal of Materials Processing Technology, 123 (2002) 285–291.

    Article  Google Scholar 

  3. G. T. Kridli, L. Bao, P. K. Mallick and Y. Tian, Investigation of thickness variation and corner filling in tube hydroforming, Journal of Materials Processing Technology, 133 (2003) 287–296.

    Article  Google Scholar 

  4. A. Aydemir, J. H. P de Vree, W. A. M. Brekelmans, M. G. D. Geers, W. H. Sillekens and R. J. Werkhoven, An adaptive simulation approach designed for tube hydroforming processes, Journal of Materials Processing Technology, 159 (2005) 303–310.

    Article  Google Scholar 

  5. S.-J. Kang, H.-K. Kim and B.-S. Kang, Tube size effect on hydroforming formability, Journal of Materials Processing Technology, 160 (2005) 24–33.

    Article  Google Scholar 

  6. Ch. Yang and G. Ngaile, Analytical model for planar tube hydroforming: Prediction of formed shape, corner fill, wall thinning, and forming pressure, International Journal of Mechanical Science, 50 (2008) 1263–1279.

    Article  Google Scholar 

  7. K. J. Fann and P. Y. Hsiao, Optimization of loading conditions for tube hydroforming, Journal of Materials Processing Technology, 140 (2003) 520–524.

    Article  Google Scholar 

  8. B. Li, T. J. Nye and D. R. Metzger, Multi-objective optimization of forming parameters for tube hydroforming process based on the Taguchi method, International Journal of Advanced Manufacturing Technology, 28 (2006) 23–30.

    Article  Google Scholar 

  9. M. Imaninejad, G. Subhash and A. Loukus, Loading path optimization of tube hydroforming process, International Journal of Machine Tools and Manufacture, 45 (2005) 1504–1514.

    Article  Google Scholar 

  10. K. Manabe, M. Suetake, H. Koyama and M. Yang, Hydroforming process optimization of aluminum alloy tube using intelligent control technique, International Journal of Machine Tools and Manufacture, 46 (2006) 1207–1211.

    Article  Google Scholar 

  11. M. Jansson, L. Nilsson and K. Simonsson, On process parameter estimation for the tube hydroforming process, Journal of Materials Processing Technology, 190 (2007) 1–11.

    Article  Google Scholar 

  12. N. Abedrabbo, M. Worswick, R. Mayer and I. van Riemsdijk, Optimization methods for the tube hydroforming process applied to advanced high-strength steels with experimental verification, Journal of Materials Processing Technology, 209 (2009) 110–123.

    Article  Google Scholar 

  13. J. O. Hallquist, LS-Dyna 970 Theoritical Manual, Livermore Software Technology Corporation, Livermore, California, (1998).

    Google Scholar 

  14. M. Mirzaali, G. H. Liaghat, H. Moslemi Naeini, S. M. H. Seyedkashi and K. Shojaee, Optimization of tube hydroforming process using simulated annealing algorithm, Procedia Engineering, 10 (2011) 3012–3019.

    Article  Google Scholar 

  15. S. H. Lee, J. Y. Lim, H. Utsunomiya, K. Euh and S. Z. Han, Microstructure and mechanical properties of a Cu-Fe-P copper alloy sheet processed by differential speed rolling, Korean Journal of Metals and Materials, 48 (2010) 942–950.

    Article  Google Scholar 

  16. R. Chibante, Simulated annealing theory with application, Sciyo Press, Rijeka, Croatia, (2010) 1–16.

    Book  Google Scholar 

  17. M. Mirzaali, S. M. H. Seyedkashi, G. H. Liaghat, H. Moslemi Naeini, K. Shojaee and Y. H. Moon, Application of simulated annealing method to pressure and force loading optimization in tube hydroforming process, International Journal of Mechanical Sciences, 55 (2012) 78–84.

    Article  Google Scholar 

  18. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of state calculations by fast computing machines, Journal of Chemical Physics, 21 (1953) 1087–1092.

    Article  Google Scholar 

  19. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983) 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. G. Kim, Y. G. Ko, D. H. Shin, C. S. Lee and S. Lee, Effect of annealing temperature on dynamic deformation behavior of ultra-fine-grained aluminium alloys fabricated by equal channel angular pressing, Korean Journal of Metals and Materials, 46 (2010) 563–571.

    Google Scholar 

  21. S. H. Lee, D. J. Yoon, K. Euh, S. H. Kim and S. Z. Han, Annealing characteristics of oxygen free copper sheet processed by differential speed rolling, Korean Journal of Metals and Materials, 48 (2010) 77–84.

    Article  Google Scholar 

  22. M. M. Keikha, Improved simulated annealing using momentum terms, proc. of the Second International Conference on Intelligent Systems, Proc. of Modelling and Simulation (ISMS), Cambodia (2011) 44–48.

  23. M. J. Dashti, K. G. Shojaee, S. M. H. Seyedkashi and M. T. Behnam, Novel simulated annealing algorithm in order to optimal adjustment of digital PID controller, Proc. of the 11th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore (2010) 1766–1771.

  24. K. G. Shojaee, N. Mollai, S. M. H. Seyedkashi and M. M. Neshati, New simulated annealing algorithm for quadratic assignment problem, proc. of the 4th International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP), Italy (2010) 87–99.

  25. Y. Aue-U-Lan, G. Ngaile and T. Altan, Optimizing tube hydroforming using process simulation and experimental verification, Journal of Materials Processing Technology, 146 (2004) 137–143.

    Article  Google Scholar 

  26. N. Asnafi and A. Skogsgårdh, Theoretical and experimental analysis of stroke-controlled tube hydroforming, Materials Science and Engineering: A, 279 (2000) 95–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Moon.

Additional information

Recommended by Associate Editor Youngseog Lee

S. M. Hossein Seyedkashi is currently a PhD candidate at department of mechanical engineering, Tarbiat Modares University, Tehran, Iran. His research interests are tube and sheet hydroforming, laser forming and optimization.

Hassan Moslemi Naeini is a professor at department of mechanical engineering, Tarbiat Modares University, Tehran, Iran since 2000. His research interests are roll forming, hydroforming and laser forming.

YoungHoon Moon is a professor at school of mechanical engineering, Pusan National University, Republic of Korea. His research interests are development of advanced processing technology and process analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyedkashi, S.M.H., Naeini, H.M., Liaghat, G.H. et al. The effect of tube dimensions on optimized pressure and force loading paths in tube hydroforming process. J Mech Sci Technol 26, 1817–1822 (2012). https://doi.org/10.1007/s12206-012-0430-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-012-0430-7

Keywords

Navigation