Skip to main content

Advertisement

Log in

What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel?

  • Review Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Protection against occupational radiation exposure in clinical settings is important. This paper clarifies the present status of medical occupational exposure protection and possible additional safety measures. Radiation injuries, such as cataracts, have been reported in physicians and staff who perform interventional radiology (IVR), thus, it is important that they use shielding devices (e.g., lead glasses and ceiling-suspended shields). Currently, there is no single perfect radiation shield; combinations of radiation shields are required. Radiological medical workers must be appropriately educated in terms of reducing radiation exposure among both patients and staff. They also need to be aware of the various methods available for estimating/reducing patient dose and occupational exposure. When the optimizing the dose to the patient, such as eliminating a patient dose that is higher than necessary, is applied, exposure of radiological medical workers also decreases without any loss of diagnostic benefit. Thus, decreasing the patient dose also reduces occupational exposure. We propose a novel four-point policy for protecting medical staff from radiation: patient dose Optimization, Distance, Shielding, and Time (pdO-DST). Patient dose optimization means that the patient never receives a higher dose than is necessary, which also reduces the dose received by the staff. The patient dose must be optimized: shielding is critical, but it is only one component of protection from radiation used in medical procedures. Here, we review the radiation protection/reduction basics for radiological medical workers, especially for IVR staff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shibahara S. The 2011 Tohoku earthquake and devastating tsunami. Tohoku J Exp Med. 2011;223(4):305–7. https://doi.org/10.1620/tjem.223.305.

    Article  PubMed  Google Scholar 

  2. Suzuki M, Suzuki H, Ishiguro H, Saito Y, Watanabe S, Kozutsumi T, Sochi Y, Nishi K, Urushihara Y, Kino Y, Numabe T, Sekine T, Chida K, Fukumoto M. Correlation of radiocesium activity between muscle and peripheral blood of live cattle depending on presence or absence of radiocontamination in feed. Radiat Res. 2019;192(6):589–601. https://doi.org/10.1667/RR15418.1.

    Article  CAS  PubMed  Google Scholar 

  3. Egawa S. Progress of disaster medicine during ten years after the 2011 great east Japan earthquake. Tohoku J Exp Med. 2021;253(3):159–70. https://doi.org/10.1620/tjem.253.159.

    Article  PubMed  Google Scholar 

  4. Kashimura Y, Chida K. Nuclear reactor accident fallout artifacts: unusual black spots on digital radiographs. AJR Am J Roentgenol. 2015;205(6):1240–3. https://doi.org/10.2214/AJR.15.14557.

    Article  PubMed  Google Scholar 

  5. Sun L, Inaba Y, Sogo Y, Ito A, Bekal M, Chida K, Moritake T. Total body irradiation causes a chronic decrease in antioxidant levels. Sci Rep. 2021;11(1):6716. https://doi.org/10.1038/s41598-021-86187-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun L, Inaba Y, Kanzaki N, Bekal M, Chida K, Moritake T. Identification of potential biomarkers of radiation exposure in blood cells by capillary electrophoresis time-of-flight mass spectrometry. Int J Mol Sci. 2020;21(3):812. https://doi.org/10.3390/ijms21030812.

    Article  CAS  PubMed Central  Google Scholar 

  7. Yashima S, Chida K. Effective risk communications through personalized consultations with pregnant women and parents by radiologic technologists after the 2011 Fukushima Daiichi nuclear disaster. Tohoku J Exp Med. 2022. https://doi.org/10.1620/tjem.2022.J001.

    Article  PubMed  Google Scholar 

  8. Nishizawa K, Nishizawa K, Moritake T, Matsumaru Y, Tsuboi K, Iwai K. Dose measurement for patients and physicians using a glass dosemeter during endovascular treatment for brain disease. Radiat Prot Dosim. 2003;107:247–52.

    Article  CAS  Google Scholar 

  9. Vano E, Escaned J, Vano-Galvan S, Fernandez JM, Galvan C. Importance of a patient dosimetry and clinical followup program in the detection of radiodermatitis after long percutaneous coronary interventions. Cardiovasc Intervent Radiol. 2013;36(2):330–7.

    Article  Google Scholar 

  10. FDA, Food and Drug Administration. Recording Information in the Patient's Medical Record that Identifies the Potential for Serious X-ray-Induced Skin Injuries Following Fluoroscopically Guided Procedures. Food and Drug Administration Important Information for Physicians and Other Health Care Professionals, September 15. 1995.

  11. Chida K, Inaba Y, Morishima Y, Taura M, Ebata A, Yanagawa I, Takeda K, Zuguchi M. Comparison of dose at an interventional reference point between the displayed estimated value and measured value. Radiol Phys Technol. 2011;4(2):189–93.

    Article  Google Scholar 

  12. Matsunaga Y, Haba T, Kobayashi M, Suzuki S, Asada Y, Chida K. Novel pregnant model phantoms for measurement of foetal radiation dose in x-ray examinations. J Radiol Prot. 2021. https://doi.org/10.1088/1361-6498/ac125c.

    Article  PubMed  Google Scholar 

  13. Inaba Y, Chida K, Shirotori K, Shimura H, Yanagawa I, Zuguchi M, Takahashi S. Comparison of the radiation dose in a cardiac IVR X-ray system. Radiat Prot Dosim. 2011;143(1):74–80.

    Article  Google Scholar 

  14. Chida K, Ohno T, Kakizaki S, Takegawa M, Yuuki H, Nakada M, Takahashi S, Zuguchi M. Radiation dose to the pediatric cardiac catheterization and intervention patient. Am J Roentgenol. 2010;195:1175–9.

    Article  Google Scholar 

  15. Nemoto M, Chida K. Reducing the breast cancer risk and radiation dose of radiography for scoliosis in children: a phantom study. Diagnostics (Basel). 2020;10(10):753. https://doi.org/10.3390/diagnostics10100753.

    Article  CAS  Google Scholar 

  16. International Commission on Radiological Protection (ICRP). The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  17. Borrego D, Marshall EL, Tran T, Siragusa DA, Bolch WE. Physical validation of UF-RIPSA: a rapid in-clinic peak skin dose mapping algorithm for fuoroscopically guided interventions. J Appl Clin Med Phys. 2018;19(3):343–50.

    Article  Google Scholar 

  18. Tanaka T, Matsubara K, Kobayashi S. Evaluation of peak skin dose during percutaneous coronary intervention procedures: relationship with fluoroscopic pulse rate and target vessel. Radiol Phys Technol. 2021;14(1):34–40. https://doi.org/10.1007/s12194-020-00599-8.

    Article  PubMed  Google Scholar 

  19. Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology. Radiol Phys Technol. 2009;2:58–61.

    Article  Google Scholar 

  20. Nakamura M, Chida K, Zuguchi M. Red emission phosphor for real-time skin dosimeter for fuoroscopy and interventional radiology. Med Phys. 2014;41(10): 101913.

    Article  Google Scholar 

  21. Chida K, Zuguchi M, Saito H, Otani H, Shirotori K, Kumagai S, Nakayama H, Matsubara K, Kohzuki M. Does digital acquisition reduce patients’ skin dose in cardiac interventional procedures? An experimental study. Am J Roentgenol. 2004;183:1111–4.

    Article  Google Scholar 

  22. Kato M, Chida K, Sato T, Oosaka H, Tosa T, Kadowaki K. Evaluating the maximum patient radiation dose in cardiac interventional procedures. Radiat Prot Dosim. 2011;143:69–73.

    Article  Google Scholar 

  23. Inaba Y, Chida K, Murabayashi Y, Endo M, Otomo K, Zuguchi M. An initial investigation of a wireless patient radiation dosimeter for use in interventional radiology. Radiol Phys Technol. 2020;13(3):321–6. https://doi.org/10.1007/s12194-020-00575-2.

    Article  PubMed  Google Scholar 

  24. Vañó E, Gonzalez L, Fernandez JM, Guibelalde E. Patient dose values in interventional radiology. Br J Radiol. 1995;68:1215–20.

    Article  Google Scholar 

  25. Moritake T, Matsumaru Y, Takigawa T, Nishizawa K, Matsumura A, Tsuboi K. Dose measurement on both patients and operators during neurointerventional procedures using photoluminescence glass dosimeters. AJNR Am J Neuroradiol. 2008;29(10):1910–7. https://doi.org/10.3174/ajnr.A1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakamura M, Chida K, Zuguchi M. Novel dosimeter using a nontoxic phosphor for real-time monitoring of patient radiation dose in interventional radiology. Am J Roentgenol. 2015;205:202–6.

    Article  Google Scholar 

  27. Kato M, Chida K, Nakamura M, et al. New real-time patient radiation dosimeter for use in radiofrequency catheter ablation. J Radiat Res. 2019;60(2):215–20.

    Article  Google Scholar 

  28. Kato M, Chida K, Sato T, Oosaka H, Tosa T, Munehisa M, Kadowaki K. The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: radiation skin injuries will often be overlooked clinically. Acta Radiol. 2012;53:1040–4.

    Article  Google Scholar 

  29. Haga Y, Chida K, Sota M, Kaga Y, Abe M, Inaba Y, Suzuki M, Meguro T, Zuguchi M. Hybrid operating room system for the treatment of thoracic and abdominal aortic aneurysms: evaluation of the radiation dose received by patients. Diagnostics (Basel). 2020;10(10):846. https://doi.org/10.3390/diagnostics10100846.

    Article  CAS  Google Scholar 

  30. Inaba Y, Nakamura M, Zuguchi M, Chida K. Development of novel real-time radiation systems using 4-channel sensors. Sensors (Basel). 2020;20(9):2741. https://doi.org/10.3390/s20092741.

    Article  CAS  Google Scholar 

  31. Terasaki K, Fujibuchi T, Murazaki H, Kuramoto T, Umezu Y, Ishigaki Y, Matsumoto Y. Evaluation of basic characteristics of a semiconductor detector for personal radiation dose monitoring. Radiol Phys Technol. 2017;10(2):189–94. https://doi.org/10.1007/s12194-016-0384-z.

    Article  PubMed  Google Scholar 

  32. Nakamura T, Shoichi S, Takei Y, Kobayashi M, Cruz V, Kobayashi I, Asegawa S, Kato K. A more accurate and safer method for the measurement of scattered radiation in X-ray examination rooms. Radiol Phys Technol. 2020;13(1):69–75. https://doi.org/10.1007/s12194-019-00550-6.

    Article  PubMed  Google Scholar 

  33. Morishima Y, Chida K, Watanabe H. Estimation of the dose of radiation received by patient and physician during a videofuoroscopic swallowing study. Dysphagia. 2016;31(4):574–8.

    Article  Google Scholar 

  34. Hwang E, Gaxiola E, Vlietstra RE, Brenner A, Ebersole D, Browne K. Real-time measurement of skin radiation during cardiac catheterization. Cathet Cardiovasc Diagn. 1998;43:367–70.

    Article  CAS  Google Scholar 

  35. ICRP. Avoidance of radiation injuries from medical interventional procedures. ICRP publication 85. Ann ICRP. 2000;30(2):9–51.

  36. Tsapaki V, Balter S, Cousins C, Holmberg O, Miller DL, Miranda P, Rehani M, Vano E. The international atomic energy agency action plan on radiation protection of patients and staff in interventional procedures: achieving change in practice. Phys Med. 2018;52:56–64. https://doi.org/10.1016/j.ejmp.2018.06.634.

    Article  CAS  PubMed  Google Scholar 

  37. Chida K, Kato M, Inaba Y, Kobayashi R, Nakamura M, Abe Y, Zuguchi M. Real-time patient radiation dosimeter for use in interventional radiology. Phys Med. 2016;32:1475–8.

    Article  Google Scholar 

  38. Inaba Y, Nakamura M, Chida K, Zuguchi M. Efectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors. Radiol Phys Technol. 2018;11(4):445–50.

    Article  Google Scholar 

  39. Chida K, Kagaya Y, Saito H, Ishibashi T, Takahashi S, Zuguchi M. Evaluation of patient radiation dose during cardiac interventional procedures: what is the most efective method? Acta Radiol. 2009;50(5):474–81.

    Article  CAS  Google Scholar 

  40. Chida K, Kagaya Y, Saito H, Chiba H, Takai Y, Takahashi S, Yamada S, Kohzuki M, Zuguchi M. Total entrance skin dose: an efective indicator of the maximum radiation dose to a patient’s skin during percutaneous coronary intervention. Am J Roentgenol. 2007;189:W224–22727.

    Article  Google Scholar 

  41. Chida K, Inaba Y, Saito H, Ishibashi T, Takahashi S, Kohzuki M, Zuguchi M. Radiation dose of interventional radiology system using a flat-panel detector. Am J Roentgenol. 2009;193:1680–5.

    Article  Google Scholar 

  42. International commission on radiological protection (ICRP). Radiological protection in cardiology, ICRP publication 120. Ann ICRP. 2013;42(1):29–78.

  43. Matsubara K, Takei Y, Mori H, Kobayashi I, Noto K, Igarashi T, Suzuki S, Akahane K. A multicenter study of radiation doses to the eye lenses of medical staff performing non-vascular imaging and interventional radiology procedures in Japan. Phys Med. 2020;74:83–91. https://doi.org/10.1016/j.ejmp.2020.05.004.

    Article  PubMed  Google Scholar 

  44. Nishi K, Fujibuchi T, Yoshinaga T. Development of an application to visualize the spread of scattered radiation in radiography using augmented reality. J Radiol Prot. 2020. https://doi.org/10.1088/1361-6498/abc14b.

    Article  PubMed  Google Scholar 

  45. Coppeta L, Pietroiusti A, Neri A, Spataro A, De Angelis E, Perrone S, Magrini A. Risk of radiation-induced lens opacities among surgeons and interventional medical staf. Radiol Phys Technol. 2019;12(1):26–9.

    Article  Google Scholar 

  46. Chida K, Kato M, Kagaya Y, et al. Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res. 2010;51:97–105.

    Article  Google Scholar 

  47. Vañó E, González L, Beneytez F, Moreno F. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol. 1998;71(847):728–33. https://doi.org/10.1259/bjr.71.847.9771383.

    Article  PubMed  Google Scholar 

  48. Niklason LT, Marx MV, Chan HP. Interventional radiologists: occupational radiation doses and risks. Radiology. 1993;187:729–33.

    Article  CAS  Google Scholar 

  49. Lynskey GE, Powell DK, Dixon RG, Silberzweig JE. Radiation protection in interventional radiology: survey results of attitudes and use. J Vasc Interv Radiol. 2013;24:1547–51. https://doi.org/10.1016/j.jvir.2013.05.039.

    Article  PubMed  Google Scholar 

  50. ICRP. ICRP statement on tissue reactions / early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. ICRP publication 118. Ann ICRP. 2012;41(1–2):11–24.

  51. Matsubara K, Yoshida S, Hirosawa A, Chusin T, Furukawa Y. Characterization of small dosimeters used for measurement of eye lens dose for medical staff during fluoroscopic examination. Diagnostics (Basel). 2021;11(2):150. https://doi.org/10.3390/diagnostics11020150.

    Article  CAS  Google Scholar 

  52. Hirata Y, Fujibuchi T, Fujita K, Igarashi T, Nishimaru E, Horita S, Sakurai R, Ono K. Angular dependence of shielding effect of radiation protective eyewear for radiation protection of crystalline lens. Radiol Phys Technol. 2019;12(4):401–8. https://doi.org/10.1007/s12194-019-00538-2.

    Article  PubMed  Google Scholar 

  53. Kawauchi S, Chida K, Moritake T, Hamada Y, Tsuruta W. Radioprotection of eye lens using protective material in neuro cone-beam computed tomography: estimation of dose reduction rate and image quality. Phys Med. 2021;82:192–9. https://doi.org/10.1016/j.ejmp.2021.02.001.

    Article  PubMed  Google Scholar 

  54. Haga Y, Chida K, Kimura Y, Yamanda S, Sota M, Abe M, Kaga Y, Meguro T, Zuguchi M. Radiation eye dose to medical staff during respiratory endoscopy under X-ray fluoroscopy. J Radiat Res. 2020;61(5):691–6. https://doi.org/10.1093/jrr/rraa034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ross AM, Segal J, Borenstein D, Jenkins E, Cho S. Prevalence of spinal disc disease among interventional cardiologists. Am J Cardiol. 1997;79:68–70.

    Article  CAS  Google Scholar 

  56. Goldstein JA, Balter S, Cowley M, Hodgson J, Klein LW. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63:407–11.

    Article  Google Scholar 

  57. Dixon RG, Khiatani V, Statler JD, Walser EM, Midia M, Miller DL, Bartal G, Collins JD, Gross KA, Stecker MS. Society of interventional radiology: occupational back and neck pain and the interventional radiologist. J Vasc Interv Radiol. 2017;28:195–9. https://doi.org/10.1016/j.jvir.2016.10.017.

    Article  PubMed  Google Scholar 

  58. Cornelis FH, Razakamanantsoa L, Ammar MB, Lehrer R, Haffaf I, El-Mouhadi S, Gardavaud F, Najdawi M, Barral M. Ergonomics in interventional radiology: awareness is mandatory. Medicina. 2021;57:500. https://doi.org/10.3390/medicina57050500.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zuguchi M, Chida K, Taura M, Inaba Y, Ebata A, Yamada S. Usefulness of non-lead aprons in radiation protection for physicians performing interventional procedures. Radiat Prot Dosim. 2008;131:531–4.

    Article  Google Scholar 

  60. The National Institute of Standards and Technology (NIST), XCOM, https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html. Accessed: 29 Mar 2022.

  61. Kato M, Chida K, Munehisa M, Sato T, Inaba Y, Suzuki M, Zuguchi M. Non-lead protective aprons for the protection of interventional radiology physicians from radiation exposure in clinical settings: an initial study. Diagnostics. 2021;11(9):1613. https://doi.org/10.3390/diagnostics11091613.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chida K, Morishima Y, Masuyama H, Chiba H, Katahira Y, Inaba Y, Mori I, Maruoka S, Takahashi S, Kohzuki M, Zuguchi M. Effect of radiation monitoring method and formula differences on estimated physician dose during percutaneous coronary intervention. Acta Radiol. 2009;50(2):170–3. https://doi.org/10.1080/02841850802616745.

    Article  CAS  PubMed  Google Scholar 

  63. Chida K, Kaga Y, Haga Y, Kataoka N, Kumasaka E, Meguro T, Zuguchi M. Occupational dose in interventional radiology procedures. AJR Am J Roentgenol. 2013;200(1):138–41. https://doi.org/10.2214/AJR.11.8455.

    Article  PubMed  Google Scholar 

  64. ICRP. Occupational radiological protection in interventional procedures. ICRP publication 139. Ann ICRP. 2018. https://doi.org/10.1177/0146645317750356.

    Article  Google Scholar 

  65. Martin CJ. Personnel dosimetry in UK radiology: is it time for a change? J Radiol Prot. 2012;32:E3–6. https://doi.org/10.1088/0952-4746/32/1/E03.

    Article  CAS  PubMed  Google Scholar 

  66. Domienik J, et al. The impact of various protective tools on the dose reduction in the eye lens in an interventional cardiology—clinical study. J Radiol Prot. 2016;36–2:309–18. https://doi.org/10.1088/0952-4746/36/2/309.

    Article  Google Scholar 

  67. Maeder M, Brunner-La Rocca HP, Wolber T, Ammann P, Roelli H, Rohner F, Rickli H. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv. 2006;67(1):18–23. https://doi.org/10.1002/ccd.20457.

    Article  PubMed  Google Scholar 

  68. Shortt CP, Al-Hashimi H, Malone L, Lee MJ. Staff radiation doses to the lower extremities in interventional radiology. Cardiovasc Intervent Radiol. 2007;30:1206–9. https://doi.org/10.1007/s00270-007-9071-0.

    Article  CAS  PubMed  Google Scholar 

  69. Chida K, Morishima Y, Katahira Y, Chiba H, Zuguchi M. Evaluation of additional lead shielding in protecting the physician from radiation during cardiac interventional procedures. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2005;61(12):1632–7. https://doi.org/10.6009/jjrt.kj00004022974.

    Article  PubMed  Google Scholar 

  70. Chung KH, Park YS, Ahn SB, Son BK. Radiation protection effect of mobile shield barrier for the medical personnel during endoscopic retrograde cholangiopancreatography: a quasi-experimental prospective study. BMJ Open. 2019;9:e027729. https://doi.org/10.1136/bmjopen-2018-027729.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Matsunaga Y, Chida K, Kondo Y, Kobayashi K, Kobayashi M, Minami K, Suzuki S, Asada Y. Diagnostic reference levels and achievable doses for common computed tomography examinations: results from the Japanese nationwide dose survey. Br J Radiol. 2019;92(1094):20180290. https://doi.org/10.1259/bjr.20180290.

    Article  PubMed  Google Scholar 

  72. Matsunaga Y, Kawaguchi A, Kobayashi M, Suzuki S, Suzuki S, Chida K. Radiation doses for pregnant women in the late pregnancy undergoing fetal-computed tomography: a comparison of dosimetry and Monte Carlo simulations. Radiol Phys Technol. 2017;10(2):148–54. https://doi.org/10.1007/s12194-016-0377-y.

    Article  PubMed  Google Scholar 

  73. Matsunaga Y, Kawaguchi A, Kobayashi K, Kobayashi M, Asada Y, Minami K, Suzuki S, Chida K. Effective radiation doses of CT examinations in Japan: a nationwide questionnaire-based study. Br J Radiol. 2016;89(1058):20150671. https://doi.org/10.1259/bjr.20150671.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Matsunaga Y, Haba T, Kobayashi M, Suzuki S, Asada Y, Chida K. Fetal radiation dose of four tube voltages in abdominal CT examinations during pregnancy: a phantom study. J Appl Clin Med Phys. 2021;22(2):178–84. https://doi.org/10.1002/acm2.13171.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Izoe Y, Nagao M, Tokai M, Hashimoto H, Tanaka I, Chida K. Radiation dose for 320-row dose-modulated dynamic coronary CT angiography. J Appl Clin Med Phys. 2021;22(9):307–12. https://doi.org/10.1002/acm2.13390.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ota J, Yokota H, Takishima H, Takada A, Irie R, Suzuki Y, Nagashima T, Horikoshi T, Chida K, Masuda Y, Uno T. Breast exposure reduction using organ-effective modulation on chest CT in Asian women. Eur J Radiol. 2019;119:108651. https://doi.org/10.1016/j.ejrad.2019.108651.

    Article  PubMed  Google Scholar 

  77. Inaba Y, Hitachi S, Watanuki M, Chida K. Occupational radiation dose to eye lenses in CT-guided interventions using MDCT-fluoroscopy. Diagnostics. 2021;11(4):646. https://doi.org/10.3390/diagnostics11040646.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Suzuki A, Matsubara K, Chusin T, Suzuki Y. Radiation doses to the eye lenses of radiologic technologists who assist patients undergoing computed tomography. Radiol Phys Technol. 2021;14(2):167–72. https://doi.org/10.1007/s12194-021-00613-7.

    Article  PubMed  Google Scholar 

  79. Ota J, Yokota H, Kawasaki T, Taoka J, Kato H, Chida K, Masuda Y, Uno T. Evaluation of radiation protection methods for assistant Staff during CT Imaging in high-energy Trauma: lens dosimetry with a phantom study. Health Phys. 2021;120(6):635–40. https://doi.org/10.1097/HP.0000000000001391.

    Article  CAS  PubMed  Google Scholar 

  80. Dragusin O, Weerasooriya R, Jaïs P, Hocini M, Ector J, Takahashi Y, Haïssaguerre M, Bosmans H, Heidbüchel H. Evaluation of a radiation protection cabin for invasive electrophysiological procedures. Eur Heart J. 2007;28:183–9.

    Article  Google Scholar 

  81. Ploux S, Ritter P, HaÏssaguerre M, Clementy J, Bordachar P. Performance of a radiation protection cabin during implantation of pacemakers or cardioverter defibrillators. J Cardiovasc Electrophysiol. 2010;21:428–30.

    Article  Google Scholar 

  82. Marichal DA, Anwar T, Kirsch D, Clements J, Carlson L, Savage C, Rees CR. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist. J Vasc Interv Radiol. 2011;22(4):437–42. https://doi.org/10.1016/j.jvir.2010.12.016.

    Article  PubMed  Google Scholar 

  83. Haussen DC, van der Bom IMJ, Nogueira RG. A prospective case control comparison of the ZeroGravity system versus a standard lead apron as radiation protection strategy in neuroendovascular procedures. J Neurointerv Surg. 2016;8(10):1052–5. https://doi.org/10.1136/neurintsurg-2015-012038.

    Article  PubMed  Google Scholar 

  84. Etzel R, König AM, Keil B, Fiebich M, Mahnken AH. Effectiveness of a new radiation protection system in the interventional radiology setting. Eur J Radiol. 2018;106:56–61. https://doi.org/10.1016/j.ejrad.2018.07.006.

    Article  PubMed  Google Scholar 

  85. Savage C, Seale T IV, Shaw C, Angela B, Marichal D, Rees C. Evaluation of a suspended personal radiation protection system vs conventional apron and shields in clinical interventional procedures. Open J Radiol. 2013;3(3):143–51. https://doi.org/10.4236/ojrad.2013.33024.

    Article  Google Scholar 

  86. Kurihara T, Itoi T, Sofuni A, Itokawa F, Tsuchiya T, Ishii K, Tsuji S, Ikeuchi N, Moriyasu F. Novel protective lead shield and pulse fluoroscopy can reduce radiation exposure during the ERCP procedure. Hepatogastroenterology. 2012;59(115):709–12. https://doi.org/10.5754/hge11764.50.

    Article  PubMed  Google Scholar 

  87. Minami T, Sasaki T, Serikawa M, Kamigaki M, Yukutake M, Ishigaki T, Ishii Y, Mouri T, Yoshimi S, Shimizu A, Tsuboi T, Kurihara K, Tatsukawa Y, Miyaki E, Chayama K. Occupational radiation exposure during endoscopic retrograde cholangiopancreatography and usefulness of radiation protective Curtains. Gastroenterol Res Pract. 2014;2014: 926876. https://doi.org/10.1155/2014/926876.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Morishima Y, Chida K, Meguro T. Effectiveness of additional lead shielding to protect staff from scattering radiation during endoscopic retrograde cholangiopancreatography procedures. J Radiat Res. 2018;59:225–32. https://doi.org/10.1093/jrr/rrx039.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Morishima Y, Chida K, Muroya Y, Utsumi Y. Effectiveness of a New lead-shielding device and additional filter for reducing staff and patient radiation exposure during videofluoroscopic swallowing study using a human phantom. Dysphagia. 2018;33(1):109–14. https://doi.org/10.1007/s00455-017-9839-6.

    Article  PubMed  Google Scholar 

  90. Nakagami K, Moritake T, Nagamoto K, Morota K, Matsuzaki S, Kuriyama T, Kunugita N. Strategy to reduce the collective equivalent dose for the lens of the physician’s eye using short radiation protection curtains to prevent cataracts. Diagnostics. 2021;11(8):1415. https://doi.org/10.3390/diagnostics11081415.

    Article  PubMed  PubMed Central  Google Scholar 

  91. van Rooijen BD, de Haan MW, Das M, Arnoldussen CW, de Graaf R, van Zwam WH, Backes WH, Jeukens CR. Efficacy of radiation safety glasses in interventional radiology. Cardiovasc Intervent Radiol. 2014;37(5):1149–55. https://doi.org/10.1007/s00270-013-0766-0.

    Article  PubMed  Google Scholar 

  92. Endo M, Haga Y, Abe M, et al. Clinical study on the shielding effect of the 0.75mmPb glasses in cardiac IVR procedures. Rinsho Hoshasen. 2020;65:71–5. https://doi.org/10.18888/rp.0000001113 (in Japanese).

    Article  Google Scholar 

  93. Mao L, Liu T, Caracappa PF, Lin H, Gao Y, Dauer LT, Xu XG. Influences of operator head posture and protective eyewear on eye lens doses in interventional radiology: a Mont Carlo study. Med Phys. 2019;46(6):2744–51. https://doi.org/10.1002/mp.13528.

    Article  PubMed  Google Scholar 

  94. Haga Y, Chida K, Kaga Y, Sota M, Meguro T, Zuguchi M. Occupational eye dose in interventional cardiology procedures. Sci Rep. 2017;7(1):569. https://doi.org/10.1038/s41598-017-00556-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kato M, Chida K, Ishida T, Toyoshima H, Yoshida Y, Yoshioka S, Moroi J, Kinoshita T. Occupational radiation exposure of the eye in neurovascular interventional physician. Radiat Prot Dosimetry. 2019;185(2):151–6. https://doi.org/10.1093/rpd/ncy285.

    Article  CAS  PubMed  Google Scholar 

  96. Kato M, Chida K, Ishida T, Sasaki F, Toyoshima H, Oosaka H, Terata K, Abe Y, Kinoshita T. Occupational radiation exposure dose of the eye in department of cardiac arrhythmia physician. Radiat Prot Dosimetry. 2019;187(3):361–8. https://doi.org/10.1093/rpd/ncz175.

    Article  PubMed  Google Scholar 

  97. Endo M, Haga Y, Sota M, Tanaka A, Otomo K, Murabayashi Y, Abe M, Kaga Y, Inaba Y, Suzuki M, Meguro T, Chida K. Evaluation of novel X-ray protective eyewear in reducing the eye dose to interventional radiology physicians. J Radiat Res. 2021;62(3):414–9. https://doi.org/10.1093/jrr/rrab014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Koukorava C, Farah J, Struelens L, et al. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses. J Radiol Prot. 2014;34:509–28.

    Article  CAS  Google Scholar 

  99. Doria S, Fedeli L, Redapi L, Piffer S, Rossi F, Falivene A, Busoni S, Belli G, Gori C, Taddeucci A. Addressing the efficiency of X-ray protective eyewear: proposal for the introduction of a new comprehensive parameter, the eye protection effectiveness (EPE). Phys Med. 2020;70:216–23. https://doi.org/10.1016/j.ejmp.2020.01.028.

    Article  CAS  PubMed  Google Scholar 

  100. INTERNATIONAL ATOMIC ENERGY AGENCY, Implications for Occupational Radiation Protection of the New Dose Limit for the Lens of the Eye, IAEA-TECDOC-1731, IAEA, Vienna (2013)

  101. Vano E, Fernandez JM, Resel LE, Moreno J, Sanchez RM. Staff lens doses in interventional urology. A comparison with interventional radiology, cardiology and vascular surgery values. J Radiol Prot. 2016;36(1):37–48. https://doi.org/10.1088/0952-4746/36/1/37.

    Article  CAS  PubMed  Google Scholar 

  102. Ishii H, Haga Y, Sota M, Inaba Y, Chida K. Performance of the DOSIRIS™ eye lens dosimeter. J Radiol Prot. 2019;39(3):N19–26. https://doi.org/10.1088/1361-6498/ab2729.

    Article  CAS  PubMed  Google Scholar 

  103. Martin CJ. Protecting interventional radiology and cardiology staff: are current designs of lead glasses and eye dosemeters fit for purpose? J Radiol Prot. 2018;38(2):E22–5. https://doi.org/10.1088/1361-6498/aabd4c.

    Article  PubMed  Google Scholar 

  104. Ishii H, Chida K, Satsurai K, Haga Y, Kaga Y, Abe M, Inaba Y, Zuguchi M. A Phantom study to determine the optimal placement of eye dosemeters on interventional cardiology staff. Radiat Prot Dosimetry. 2019;185(4):409–13. https://doi.org/10.1093/rpd/ncz027.

    Article  CAS  PubMed  Google Scholar 

  105. Schueler BA, Fetterly KA. Eye protection in interventional procedures. Br J Radiol. 2021;94(1126):20210436. https://doi.org/10.1259/bjr.20210436.

    Article  PubMed  Google Scholar 

  106. Martin CJ. Eye lens dosimetry for fluoroscopically guided clinical procedures: practical approaches to protection and dose monitoring. Radiat Prot Dosimetry. 2016;169(1–4):286–91. https://doi.org/10.1093/rpd/ncv431.

    Article  PubMed  Google Scholar 

  107. AAPM PP 32-A: AAPM Position Statement on the Use of Patient Gonadal and Fetal Shielding. (2019). https://www.aapm.org/org/policies/details.asp?id=468&type=PP&current=true. Accessed: 29 Mar 2022.

  108. Ordiales JM, Nogales JM, Vano E, López-Mínguez JR, Alvarez FJ, Ramos J, Martínez G, Sánchez RM. Occupational dose reduction in cardiac catheterisation laboratory: a randomised trial using a shield drape placed on the patient. Radiat Prot Dosimetry. 2017;174(2):255–61. https://doi.org/10.1093/rpd/ncw139.

    Article  CAS  PubMed  Google Scholar 

  109. Koenig AM, Maas J, Viniol S, Etzel R, Fiebich M, Thomas RP, Mahnken AH. Scatter radiation reduction with a radiation-absorbing pad in interventional radiology examinations. Eur J Radiol. 2020;132:109245. https://doi.org/10.1016/j.ejrad.2020.10924.

    Article  CAS  PubMed  Google Scholar 

  110. Sota M, Haga Y, Arai T, et al. Phantom study on radiation protection with the L—shaped lead drape for cardiac IVR operators. Rinsho Hoshasen. 2020;66:501–7. https://doi.org/10.1888/rp.0000001603 (in Japanese).

    Article  Google Scholar 

  111. Kherad B, Jerichow T, Blaschke F, Noutsias M, Pieske B, Tschöpe C, Krackhardt F. Efficacy of RADPAD protective drape during coronary angiography. Herz. 2018;43(4):310–4. https://doi.org/10.1007/s00059-017-4560-7.

    Article  CAS  PubMed  Google Scholar 

  112. Marcusohn E, Postnikov M, Musallam A, Yalonetsky S, Mishra S, Kerner A, Poliakov A, Roguin A. Usefulness of pelvic radiation protection shields during transfemoral procedures—operator and patient considerations. Am J Cardiol. 2018;122(6):1098–103. https://doi.org/10.1016/j.amjcard.2018.06.003.

    Article  PubMed  Google Scholar 

  113. Vlastra W, Delewi R, Sjauw KD, Beijk MA, Claessen BE, Streekstra GJ, Bekker RJ, van Hattum JC, Wykrzykowska JJ, Vis MM, Koch KT, de Winter RJ, Piek JJ, Henriques JPS. Efficacy of the RADPAD protection drape in reducing operators’ radiation exposure in the catheterization laboratory: a sham-controlled randomized trial. Circ Cardiovasc Interv. 2017;10(11):e006058. https://doi.org/10.1161/CIRCINTERVENTIONS.117.006058.

    Article  PubMed  Google Scholar 

  114. Sotoh T. Skin cancer of the thumb induced by occupational exposure: a case report. J Jpn Orthop Assoc. 2019;93:793–6 (in Japanese).

    Google Scholar 

  115. Yamane K, Kai N, Miyamoto T, Matsushita T. Exposure of the examiner to radiation during myelography versus radiculography and root block: a comparative study. J Orthop Sci. 2017;22(2):243–7. https://doi.org/10.1016/j.jos.2016.11.018.

    Article  PubMed  Google Scholar 

  116. Omi H, Itabashi T, Nagaoki T, Ogawa T, Tomita T, Sato H, Ito J. Protecting surgeons’ fingers from radiation exposure during lumbosacral selective nerve root block. Spine Surg Relat Res. 2018;3(2):178–82. https://doi.org/10.22603/ssrr.2018-0056.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Badawy MK, Deb P, Chan R, Farouque O. A review of radiation protection solutions for the staff in the cardiac catheterisation laboratory. Heart Lung Circ. 2016;25(10):961–7. https://doi.org/10.1016/j.hlc.2016.02.021.

    Article  PubMed  Google Scholar 

  118. Wagner LK, Mulhern OR. Radiation-attenuating surgical gloves: effects of scatter and secondary electron production. Radiology. 1996;200(1):45–8. https://doi.org/10.1148/radiology.200.1.8657942.

    Article  CAS  PubMed  Google Scholar 

  119. McCaffrey JP, Tessier F, Shen H. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med Phys. 2012;39(7):4537–46. https://doi.org/10.1118/1.4730504.

    Article  CAS  PubMed  Google Scholar 

  120. NCRP. Radiation Dose Management for Fluoroscopically Guided Interventional Medical Procedures. NCRP Report No. 168. National Council on Radiation Protection and Measurements. 2010:125–132. Accessed 29 Mar 2022.

  121. Lee SY, Min E, Bae J, Chung CY, Lee KM, Kwon SS, Park MS, Lee K. Types and arrangement of thyroid shields to reduce exposure of surgeons to ionizing radiation during intraoperative use of C-arm fluoroscopy. Spine. 2013;38(24):2108–12. https://doi.org/10.1097/BRS.0b013e3182a8270d.

    Article  PubMed  Google Scholar 

  122. Chida K, Morishima Y, Inaba Y, Taura M, Ebata A, Takeda K, Shimura H, Zuguchi M. Physician-received scatter radiation with angiography systems used for interventional radiology: comparison among many X-ray systems. Radiat Prot Dosimetry. 2012;149(4):410–6. https://doi.org/10.1093/rpd/ncr312.

    Article  CAS  PubMed  Google Scholar 

  123. Wagner LK, Archer BR, Cohen AM. Management of patient skin dose in fluoroscopically guided interventional procedures. J Vasc Interv Radiol. 2000;11(1):25–33. https://doi.org/10.1016/s1051-0443(07)61274-3.

    Article  CAS  PubMed  Google Scholar 

  124. Wagner LK, McNeese MD, Marx MV, Siegel EL. Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology. 1999;213(3):773–6. https://doi.org/10.1148/radiology.213.3.r99dc16773.

    Article  CAS  PubMed  Google Scholar 

  125. Morishima Y, Chida K, Katahira Y, Seto H, Chiba H, Tabayashi K. Need for radiation safety education for interventional cardiology staff, especially nurses. Acta Cardiol. 2016;71(2):151–5. https://doi.org/10.2143/AC.71.2.3141844.

    Article  PubMed  Google Scholar 

  126. ICRP. Education and training in radiological protection for diagnostic and interventional procedures. ICRP publication 113. Ann ICRP. 2009;39(5):9–49.

  127. Matsuzaki S, Moritake T, Morota K, Nagamoto K, Nakagami K, Kuriyama T, Kunugita N. Development and assessment of an educational application for the proper use of ceiling-suspended radiation shielding screens in angiography rooms using augmented reality technology. Eur J Radiol. 2021;143:109925. https://doi.org/10.1016/j.ejrad.2021.109925.

    Article  PubMed  Google Scholar 

  128. Fujibuchi T. Radiation protection education using virtual reality for the visualisation of scattered distributions during radiological examinations. J Radiol Prot. 2021. https://doi.org/10.1088/1361-6498/ac16b1.

    Article  PubMed  Google Scholar 

  129. Chida K, Sai M, Saito H, Takase K, Zuguchi M, Sasaki M, Sato T. Relationship between the pixel value in digital subtraction angiography and iodine concentration: study in high iodine concentration with original phantom. Tohoku J Exp Med. 2000;190(3):169–76. https://doi.org/10.1620/tjem.190.169.

    Article  CAS  PubMed  Google Scholar 

  130. Chida K, Saito H, Ito D, Shimura H, Zuguchi M, Takai Y. FFT analysis of the X-ray tube voltage waveforms of high-frequency generators for radiographic systems. Acta Radiol. 2005;46(8):810–4. https://doi.org/10.1080/02841850500335069.

    Article  CAS  PubMed  Google Scholar 

  131. Haga Y, Chida K, Inaba Y, Kaga Y, Meguro T, Zuguchi M. A Rotatable quality control phantom for evaluating the performance of flat panel detectors in imaging moving objects. J Digit Imaging. 2016;29(1):38–42. https://doi.org/10.1007/s10278-015-9816-2.

    Article  PubMed  Google Scholar 

  132. Chida K, Kaga Y, Haga Y, Takeda K, Zuguchi M. Quality control phantom for flat panel detector X-ray systems. Health Phys. 2013;104(1):97–101. https://doi.org/10.1097/HP.0b013e3182659c72.

    Article  CAS  PubMed  Google Scholar 

  133. Inaba Y, Chida K, Kobayashi R, Kaga Y, Zuguchi M. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. J Radiol Prot. 2014;34(3):N65-71. https://doi.org/10.1088/0952-4746/34/3/N65.

    Article  PubMed  Google Scholar 

  134. Murat D, Wilken-Tergau C, Gottwald U, Nemitz O, Uher T, Schulz E. Effects of real-time dosimetry on staff radiation exposure in the cardiac catheterization laboratory. J Invasive Cardiol. 2021;33(5):E337–41.

    PubMed  Google Scholar 

  135. Vano E, Fernandez JM, Sanchez R. Occupational dosimetry in real time. Benefits for interventional radiology. Radiat Meas. 2011;46:1262–5. https://doi.org/10.1016/j.radmeas.2011.04.030.

    Article  CAS  Google Scholar 

  136. Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M. Relationship between fuoroscopic time, dose–area product, body weight, and maximum radiation skin dose in cardiac interventional procedure. Am J Roentgenol. 2006;186:774–8.

    Article  Google Scholar 

  137. Chida K, Fuda K, Saito H, Takai Y, Takahashi S, Yamada S, Kohzuki M, Zuguchi M. Patient skin dose in cardiac interventional procedures: conventional fluoroscopy versus pulsed fluoroscopy. Catheter Cardiovasc Interv. 2007;69(1):115–21. https://doi.org/10.1002/ccd.20961 (discussion 122).

    Article  PubMed  Google Scholar 

  138. Inaba Y, Chida K, Kobayashi R, Zuguchi M. A cross-sectional study of the radiation dose and image quality of X-ray equipment used in IVR. J Appl Clin Med Phys. 2016;17(4):391–401.

    Article  Google Scholar 

  139. Chida K, Saito H, Kagaya Y, Kohzuki M, Takai Y, Takahashi S, Yamada S, Zuguchi M. Indicators of the maximum radiation dose to the skin during percutaneous coronary intervention in different target vessels. Catheter Cardiovasc Interv. 2006;68(2):236–41. https://doi.org/10.1002/ccd.20830.

    Article  PubMed  Google Scholar 

  140. Haskal ZJ, Worgul BV. Interventional radiology carries occupational risk for cataracts. RSNA News. 2004;14:5–6.

    Google Scholar 

  141. Vano E, Gonzalez L, Fernández JM, Fernández JM, Haskal ZJ. Eye lens exposure to radiation in interventional suites: caution is warranted. Radiology. 2008;248:945–53. https://doi.org/10.1148/radiol.2482071800.

    Article  PubMed  Google Scholar 

  142. Kawauchi S, Chida K, Hamada Y, Tsuruta W. Lens dose reduction with a bismuth shield in neuro cone-beam computed tomography: an investigation on optimum shield device placement conditions. Radiol Phys Technol. 2021. https://doi.org/10.1007/s12194-021-00644-0.

    Article  PubMed  Google Scholar 

  143. Chida K, Takahashi T, Ito D, Shimura H, Takeda K, Zuguchi M. Clarifying and visualizing sources of staff-received scattered radiation in interventional procedures. AJR Am J Roentgenol. 2011;197(5):W900–3. https://doi.org/10.2214/AJR.10.6396.

    Article  PubMed  Google Scholar 

  144. Inaba Y, Hitachi S, Watanuki M, Chida K. Radiation eye dose for physicians in CT fluoroscopy-guided biopsy. Tomography. 2022;8(1):438–46. https://doi.org/10.3390/tomography8010036.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ishii H, Chida K, Satsurai K, Haga Y, Kaga Y, Abe M, Inaba Y, Zuguchi M. Occupational eye dose correlation with neck dose and patient-related quantities in interventional cardiology procedures. Radiol Phys Technol. 2022. https://doi.org/10.1007/s12194-022-00650-w.

    Article  PubMed  Google Scholar 

  146. Schueler BA. Operator shielding: how and why. Tech Vasc Interv Radiol. 2010;13(3):167–71. https://doi.org/10.1053/j.tvir.2010.03.005.

    Article  PubMed  Google Scholar 

  147. IAEA (International Atomic Energy Agency), 10 Pearls: Radiation protection of staff in fluoroscopy. Reducing patient dose always results in staff dose reduction. https://www.iaea.org/sites/default/files/documents/rpop/poster-staff-radiation-protection.pdf

  148. Le Heron J, Padovani R, Smith I, Czarwinski R. Radiation protection of medical staff. Eur J Radiol. 2010;76(1):20–3. https://doi.org/10.1016/j.ejrad.2010.06.034.

    Article  PubMed  Google Scholar 

  149. Bartal G, Vano E, Paulo G. Get protected! recommendations for staff in IR. Cardiovasc Intervent Radiol. 2021;44(6):871–6. https://doi.org/10.1007/s00270-021-02828-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Momoru Kato (Akita Medical Center), Dr. Yoshihiro Haga (Sendai-kousei Hospital), Dr. Masaaki Akahane (International University of Health and Welfare), Dr. Takashi Moritake (National Institutes for Quantum Science and Technology), and Dr. Yohei Inaba (Tohoku University) for their invaluable assistance.

Funding

This work was supported in part by the Industrial Disease Clinical Research grant (200701–01), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Chida.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chida, K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel?. Radiol Phys Technol 15, 101–115 (2022). https://doi.org/10.1007/s12194-022-00660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00660-8

Keywords

Navigation