Skip to main content
Log in

An initial investigation of a wireless patient radiation dosimeter for use in interventional radiology

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Radiation exposure during interventional radiology (IR) procedures is a critical issue. We have developed a wireless real-time dosimeter for IR patients that use nontoxic phosphor (four sensors). We evaluated the basic performance parameters (such as dose linearity, batch uniformity, reproducibility, and wireless-communication conditions) of the developed system using an IR X-ray system. Further, we investigated the influence of noise from other medical equipment on our wireless real-time dosimeter in the IR X-ray room. Overall, our wireless system exhibited excellent performance in terms of uniformity, reproducibility, and linearity; moreover, the wireless communication performance was better. The developed system enabled real-time visualization of patient radiation dose, without noise contamination from other medical equipment. In addition, the wireless system can be easily installed in a location where the PC screen (display) can be readily viewed by the IR physician. Hence, we developed a wireless system that can display the patient radiation dose data in real time; the system performed satisfactorily upon application in radiation dosimetry. Therefore, our wireless system will facilitate the real-time monitoring/management of patient radiation dose during IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. International Commission on Radiological Protection (ICRP). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  2. Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology. Radiol Phys Technol. 2009;2:58–61.

    Article  Google Scholar 

  3. Zuguchi M, Chida K, Taura M, et al. Usefulness of non-lead aprons in radiation protection for physicians performing interventional procedures. Radiat Prot Dosim. 2008;131:531–4.

    Article  Google Scholar 

  4. Chida K, Kato M, Kagaya Y, et al. Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res. 2010;51:97–105.

    Article  Google Scholar 

  5. International Commission on Radiological Protection (ICRP). Radiological protection in cardiology, ICRP Publication 120. Ann ICRP. 2013;42(1):1–100.

    Article  Google Scholar 

  6. Morishima Y, Chida K, Watanabe H. Estimation of the dose of radiation received by patient and physician during a videofluoroscopic swallowing study. Dysphagia. 2016;31(4):574–8.

    Article  Google Scholar 

  7. Chida K, Takahashi T, Ito D, et al. Clarifying and visualizing sources of staff-received scattered radiation in interventional procedures. Am J Roentgenol. 2011;197:W900–903.

    Article  Google Scholar 

  8. Ishii H, Haga Y, Sota M, et al. Performance of the DOSIRIS™ eye lens dosimeter. J Radiol Prot. 2019;39(3):N19–N26.

    Article  CAS  Google Scholar 

  9. International Commission on Radiological Protection (ICRP). Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85. Ann ICRP. 2000;30(2):1–53.

    Article  Google Scholar 

  10. Chida K, Kaga Y, Haga Y, et al. Occupational dose in interventional radiology procedures. Am J Roentgenol. 2013;200:138–41.

    Article  Google Scholar 

  11. Haga Y, Chida K, Kaga Y, et al. Occupational eye dose in interventional cardiology procedures. Sci Rep. 2017;7(1):569.

    Article  Google Scholar 

  12. Borrego D, Marshall EL, Tran T, Siragusa DA, Bolch WE. Physical validation of UF-RIPSA: a rapid in-clinic peak skin dose mapping algorithm for fluoroscopically guided interventions. J Appl Clin Med Phys. 2018;19(3):343–50.

    Article  Google Scholar 

  13. Inaba Y, Chida K, Kobayashi R, Kaga Y, Zuguchi M. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. J Radiol Prot. 2014;34:N65–71.

    Article  Google Scholar 

  14. Kato M, Chida K, Ishida T, et al. Occupational radiation exposure of the eye in neurovascular interventional physician. Radiat Prot Dosim. 2019;185(2):151–6.

    Article  Google Scholar 

  15. Ishii H, Chida K, Satsurai K, et al. A phantom study to determine the optimal placement of eye dosimeters on interventional cardiology staff. Radiat Prot Dosim. 2019;185(4):409–13.

    CAS  Google Scholar 

  16. Coppeta L, Pietroiusti A, Neri A, Spataro A, De Angelis E, Perrone S, Magrini A. Risk of radiation-induced lens opacities among surgeons and interventional medical staff. Radiol Phys Technol. 2019;12(1):26–9.

    Article  Google Scholar 

  17. Kato M, Chida K, Ishida T, et al. Occupational radiation exposure dose of the eye in department of cardiac arrhythmia physician. Radiat Prot Dosim. 2019;187(3):361–8.

    Article  Google Scholar 

  18. Vañó E, Gonzalez L, Fernandez JM, Guibelalde E. Patient dose values in interventional radiology. Br J Radiol. 1995;68:1215–20.

    Article  Google Scholar 

  19. Nishizawa K, Nishizawa K, Moritake T, Matsumaru Y, Tsuboi K, Iwai K. Dose measurement for patients and physicians using a glass dosemeter during endovascular treatment for brain disease. Radiat Prot Dosim. 2003;107:247–52.

    Article  CAS  Google Scholar 

  20. Hwang E, Gaxiola E, Vlietstra RE, Brenner A, Ebersole D, Browne K. Real-time measurement of skin radiation during cardiac catheterization. Cathet Cardiovasc Diagn. 1998;43:367–70.

    Article  CAS  Google Scholar 

  21. Chida K, Kagaya Y, Saito H, Ishibashi T, Takahashi S, Zuguchi M. Evaluation of patient radiation dose during cardiac interventional procedures: what is the most effective method? Acta Radiol. 2009;50(5):474–81.

    Article  CAS  Google Scholar 

  22. Nakamura M, Chida K, Zuguchi M. Red emission phosphor for real-time skin dosimeter for fluoroscopy and interventional radiology. Med Phys. 2014;41(10):101913.

    Article  Google Scholar 

  23. Nakamura M, Chida K, Zuguchi M. Novel dosimeter using a nontoxic phosphor for real-time monitoring of patient radiation dose in interventional radiology. Am J Roentgenol. 2015;205:202–6.

    Article  Google Scholar 

  24. Chida K, Kato M, Inaba Y, Kobayashi R, Nakamura M, Abe Y, Zuguchi M. Real-time patient radiation dosimeter for use in interventional radiology. Phys Med. 2016;32:1475–8.

    Article  Google Scholar 

  25. Inaba Y, Nakamura M, Chida K, Zuguchi M. Effectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors. Radiol Phys Technol. 2018;11(4):445–50.

    Article  Google Scholar 

  26. Kato M, Chida K, Nakamura M, et al. New real-time patient radiation dosimeter for use in radiofrequency catheter ablation. J Radiat Res. 2019;60(2):215–20.

    Article  Google Scholar 

  27. Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M. Relationship between fluoroscopic time, dose–area product, body weight, and maximum radiation skin dose in cardiac interventional procedure. Am J Roentgenol. 2006;186:774–8.

    Article  Google Scholar 

  28. Chida K, Kagaya Y, Saito H, Chiba H, Takai Y, Takahashi S, Yamada S, Kohzuki M, Zuguchi M. Total entrance skin dose: an effective indicator of the maximum radiation dose to a patient’s skin during percutaneous coronary intervention. Am J Roentgenol. 2007;189:W224–W22727.

    Article  Google Scholar 

  29. Inaba Y, Chida K, Shirotori K, Shimura H, Yanagawa I, Zuguchi M, Takahashi S. Comparison of the radiation dose in a cardiac IVR X-ray system. Radiat Prot Dosim. 2011;143(1):74–80.

    Article  Google Scholar 

  30. Chida K, Ohno T, Kakizaki S, Takegawa M, Yuuki H, Nakada M, Takahashi S, Zuguchi M. Radiation dose to the pediatric cardiac catheterization and intervention patient. Am J Roentgenol. 2010;195:1175–9.

    Article  Google Scholar 

  31. Kato M, Chida K, Sato T, Oosaka H, Tosa T, Munehisa M, Kadowaki K. The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: radiation skin injuries will often be overlooked clinically. Acta Radiol. 2012;53:1040–4.

    Article  Google Scholar 

  32. Chida K, Zuguchi M, Saito H, Otani H, Shirotori K, Kumagai S, Nakayama H, Matsubara K, Kohzuki M. Does digital acquisition reduce patients’ skin dose in cardiac interventional procedures? An experimental study. Am J Roentgenol. 2004;183:1111–4.

    Article  Google Scholar 

  33. Chida K, Inaba Y, Saito H, Ishibashi T, Takahashi S, Kohzuki M, Zuguchi M. Radiation dose of interventional radiology system using a flat-panel detector. Am J Roentgenol. 2009;193:1680–5.

    Article  Google Scholar 

  34. Kato M, Chida K, Sato T, Oosaka H, Tosa T, Kadowaki K. Evaluating the maximum patient radiation dose in cardiac interventional procedures. Radiat Prot Dosim. 2011;143:69–73.

    Article  Google Scholar 

  35. Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Comparison of dose at an interventional reference point between the displayed estimated value and measured value. Radiol Phys Technol. 2011;4:189–93.

    Article  Google Scholar 

  36. Vano E, Escaned J, Vano-Galvan S, Fernandez JM, Galvan C. Importance of a patient dosimetry and clinical followup program in the detection of radiodermatitis after long percutaneous coronary interventions. Cardiovasc Intervent Radiol. 2013;36(2):330–7.

    Article  Google Scholar 

  37. Inaba Y, Chida K, Kobayashi R, Zuguchi M. A cross-sectional study of the radiation dose and image quality of X-ray equipment used in IVR. J Appl Clin Med Phys. 2016;17(4):391–401.

    Article  Google Scholar 

  38. Ito H, Kobayashi I, Watanabe K, Ochi S, Yanagawa N. Evaluation of scattered radiation from fluoroscopy using small OSL dosimeters. Radiol Phys Technol. 2019;12(4):393–400.

    Article  Google Scholar 

  39. U.S. Food and Drug Administration. Recording information in the patient's medical record that identifies the potential for serious X-ray-induced skin injuries. Rockville: Center for Devices and Radiological Health, FDA: 1995.

  40. International Electrotechnical Commission (IEC). Medical electrical equipment. Part 2–43. Particular requirements for the safety of X-ray equipment for interventional procedures. IEC 60601-2-43. Geneva, Switzerland: International Electrotechnical Commission; 2000.

  41. Chida K, Inaba Y, Morishima Y, Taura M, Ebata A, Yanagawa I, Takeda K, Zuguchi M. Comparison of dose at an interventional reference point between the displayed estimated value and measured value. Radiol Phys Technol. 2011;4(2):189–93.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Masahiro Sota and Yoshihiro Haga, from Sendai Kousei Hospital, Japan, for their invaluable assistance. We also thank Shouko Ishizawa, Shuusei Maki, Fumika Yamada, Wakana Kawaguchi, and Yuuto Oomori, from Tohoku University, Japan, for their technical assistance.

Funding

This work was supported in part by a Grant-in-Aid for Scientific Research (17K10392) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Chida.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This was a phantom study. This article does not contain any human and animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, Y., Chida, K., Murabayashi, Y. et al. An initial investigation of a wireless patient radiation dosimeter for use in interventional radiology. Radiol Phys Technol 13, 321–326 (2020). https://doi.org/10.1007/s12194-020-00575-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-020-00575-2

Keywords

Navigation