Skip to main content

Advertisement

Log in

Tibial Torsion and Patellofemoral Pain and Instability in the Adult Population: Current Concept Review

  • Hot Topics
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Tibial torsion is a recognized cause of patellofemoral pain and instability in the paediatric population; however, it is commonly overlooked in the adult population. The aim of this review article is to summarize the current best evidence on tibial torsion for the adult orthopaedic surgeon.

Recent Findings

The true incidence of tibial torsion in the adult population is unknown, with significant geographical variations making assessment very difficult. CT currently remains the gold standard for quantitatively assessing the level of tibial torsion and allows assessment of any associated femoral and knee joint rotational anomalies. Surgical correction should only be considered after completion of a course of physiotherapy aimed at addressing the associated proximal and gluteal weakness. Tibial torsion greater than 30° is used as the main indicator for tibial de-rotation osteotomy by the majority of authors. In patients with associated abnormal femoral rotation, current evidence would suggest that a single-level correction of the tibia (if considered to be a dominant deformity) is sufficient in the majority of cases. Proximal de-rotational osteotomy has been more commonly reported in the adult population and confers the advantage of allowing simultaneous correction of patella alta or excessive tubercle lateralization. Previous surgery prior to de-rotational osteotomy is common; however, in patients with persistent symptoms surgical correction still provides significant benefit.

Summary

Tibial torsion persists into adulthood and can play a significant role in patellofemoral pathology. A high index of suspicion is required in order to identify torsion clinically. Surgical correction is effective for both pain and instability, but results are inferior in patients with very high pain levels pre-surgery and multiple previous surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hutter C, Scott W. Tibial torsion. J Bone Joint Surg. 1949;31A:511–8.

    Article  PubMed  Google Scholar 

  2. Staheli L. Torsional deformity. Pediatr Clin N Am. 1977;24:799–811.

    Article  CAS  Google Scholar 

  3. Fabry G, Cheng LX, Molenaers G. Normal and abnormal torsional development in children: Clin Orthop. 1994 May;NA;(302):22–26.

  4. Hicks J, Arnold A, Anderson F, Schwartz M, Delp S. The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. Gait Posture. 2007 Oct;26(4):546–52.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Turner MS. The association between tibial torsion and knee joint pathology. Clin Orthop. 1994 May;302:47–51.

    Article  Google Scholar 

  6. Yagi T, Sasaki T. Tibial torsion in patients with medial-type osteoarthritic knee. Clin Orthop. 1986 Dec;213:177–82.

    Article  Google Scholar 

  7. Staheli L. Lower extremity rotational problems in children. J Bone Joint Surg. 1985;67A:39.

    Article  Google Scholar 

  8. LeDamany P. La torsion de tibia, normale. Da- thologique, experimentale. J Anat et Physiol. 1909;45:598.

    Google Scholar 

  9. Schneider M. The effect of growth on femoral torsion. An experimental study in dogs. J Bone Joint Surg. 1963;45A:1439.

    Article  Google Scholar 

  10. Yang P-F, Kriechbaumer A, Albracht K, Sanno M, Ganse B, Koy T, et al. On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo. J Biomech. 2015 Feb;48(3):456–64.

    Article  PubMed  Google Scholar 

  11. Eckhoff DG, Kramer RC, Watkins JJ, Burke BJ, Alongi CA, Stamm ER, et al. Variation in tibial torsion. Clin Anat. 1994;7(2):76–9.

    Article  Google Scholar 

  12. Strecker W, Keppler P, Gebhard F, Kinzl L. Length and torsion of the lower limb. J BONE Jt Surg. 1997;79(6):5.

    Article  Google Scholar 

  13. Mullaji A, Sharma A, Marawar S, Kohli A. Tibial torsion in non-arthritic Indian adults: a computer tomography study of 100 limbs. Indian J Orthop. 2008;42(3):309–13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vanhove F, Noppe N, Fragomen AT, Hoekstra H, Vanderschueren G, Metsemakers W-J. Standardization of torsional CT measurements of the lower limbs with threshold values for corrective osteotomy. Arch Orthop Trauma Surg. 2019 Jun;139(6):795–805.

    Article  PubMed  Google Scholar 

  15. Yoshioka Y, Siu DW, Scudamore RA, Cooke TDV. Tibial anatomy and functional axes. J Orthop Res. 1989 Jan;7(1):132–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hutchins PM, Rambicki D, Comacchio L, Paterson DC. Tibiofibular torsion in normal and treated clubfoot populations. J Pediatr Orthop. 1986 Aug;6(4):452–5.

    Article  CAS  PubMed  Google Scholar 

  17. Tamari K, Tinley P, Briffa K, Aoyagi K. Ethnic-, gender-, and age-related differences in femorotibial angle, femoral antetorsion, and tibiofibular torsion: cross-sectional study among healthy Japanese and Australian Caucasians. Clin Anat. 2005;19(1):59–67.

    Article  Google Scholar 

  18. Weinberg DS, Park PJ, Morris WZ, Liu RW. Femoral version and tibial torsion are not associated with hip or knee arthritis in a large osteological collection. J Pediatr Orthop. 2017;37(2):e120–8.

    Article  PubMed  Google Scholar 

  19. Hovinga KR, Lerner AL. Anatomic variations between Japanese and Caucasian populations in the healthy young adult knee joint. J Orthop Res Off Publ Orthop Res Soc. 2009;27(9):1191–6.

    Article  Google Scholar 

  20. Tamari K, Briffa NK, Tinley P, Aoyagi K. Variations in torsion of the lower limb in Japanese and Caucasians with and without knee osteoarthritis. J Rheumatol. 2007 Jan;34(1):145–50.

    PubMed  Google Scholar 

  21. Yagi T. Tibial torsion in patients with medial-type osteoarthrotic knees. Clin Orthop. 1994;302:52–6.

    Article  Google Scholar 

  22. Moussa M. Rotational malalignment and femoral torsion in osteoarthritic knees with patellofemoral joint involvement. Clin Orthop. 1994;304:176–83.

    Article  Google Scholar 

  23. Radler C, Kranzl A, Manner HM, Höglinger M, Ganger R, Grill F. Torsional profile versus gait analysis: consistency between the anatomic torsion and the resulting gait pattern in patients with rotational malalignment of the lower extremity. Gait Posture. 2010 Jul;32(3):405–10.

    Article  PubMed  Google Scholar 

  24. Hudson D. The rotational profile: a study of lower limb axial torsion, hip rotation, and the foot progression angle in healthy adults. Gait Posture. 2016;49:426–30.

    Article  PubMed  Google Scholar 

  25. Paulos L, Swanson SC, Stoddard GJ, Barber-Westin S. Surgical correction of limb malalignment for instability of the patella: a comparison of 2 techniques. Am J Sports Med. 2009;37(7):1288–300 Whilst published 11years ago, it is the only trial to compare outcomes of tibial de-rotational osteotomy and isolated tibial tubercle osteotomy.

    Article  PubMed  Google Scholar 

  26. Alexander N, Wegener R, Lengnick H, Payne E, Klima H, Cip J, et al. Compensatory gait deviations in patients with increased outward tibial torsion pre and post tibial derotation osteotomy. Gait Posture. 2020;77:43–51 Summarises the biomechanical consequences of tibial torsion and the compensatory mechanisms associated with it. Also provides some inside as to the biomechanical benefit of corrective ostetomy.

    Article  PubMed  Google Scholar 

  27. MacWilliams BA, McMulkin ML, Baird GO, Stevens PM. Distal tibial rotation osteotomies normalize frontal plane knee moments. J Bone Jt Surg-Am Vol. 2010;92(17):2835–42.

    Article  Google Scholar 

  28. Andrews M, Noyes FR, Hewett TE, Andriacchi TP. Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data. J Orthop Res. 1996;14(2):289–95.

    Article  CAS  PubMed  Google Scholar 

  29. Yazdi H, Mallakzadeh M, Sadat Farshidfar S, Givehchian B, Daneshparvar H, Behensky H. The effect of tibial rotation on knee medial and lateral compartment contact pressure. Knee Surg Sports Traumatol Arthrosc. 2016 Jan;24(1):79–83.

    Article  PubMed  Google Scholar 

  30. Hudson D, Royer T, Richards J. Bone mineral density of the proximal tibia relates to axial torsion in the lower limb. Gait Posture. 2007;26(3):446–51.

    Article  PubMed  Google Scholar 

  31. Bombaci H. Tibial torsion: cause or consequence of osteoarthritis? Acta Orthop Traumatol Turc. 2012;46(3):181–5.

    Article  PubMed  Google Scholar 

  32. Mochizuki T, Tanifuji O, Koga Y, Hata R, Mori T, Nishino K, et al. External torsion in a proximal tibia and internal torsion in a distal tibia occur independently in varus osteoarthritic knees compared to healthy knees. J Orthop Sci. 2017;22(3):501–5.

    Article  PubMed  Google Scholar 

  33. Cooke TD, Price N, Fisher B, Hedden D. The inwardly pointing knee. An unrecognized problem of external rotational malalignment. Clin Orthop. 1990;260:56–60.

    Article  Google Scholar 

  34. Ramaswamy R, Kosashvili Y, Murnaghan JJ, Yau CK-M, Cameron JC. Bilateral rotational osteotomies of the proximal tibiae and tibial tuberosity distal transfers for the treatment of congenital lateral dislocations of patellae: a case report and literature review. Knee. 2009;16(6):507–11.

    Article  PubMed  Google Scholar 

  35. Staheli LT, Corbett M, Wyss C, King H. Lower-extremity rotational problems in children. Normal values to guide management. J Bone Joint Surg Am. 1985;67(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  36. Gage J, Schwartz M, Koop S. The identification and treat- ment of gait problems in cerebral palsy. 2nd ed. Mac Keith Press; 2009.

  37. MILNER CE, SOAMES RW. A comparison of four in vivo methods of measuring tibial torsion. J Anat. 1998;193(Pt 1):139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee S, Chung C, Park M, Choi T. Tibial torsion in cerebral palsy: validity and reliability of measurement. Clin Orthop Relat Res. 2009;467(8):2098–104.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Goutallier D, Van Driessche S, Manicom O, Sariali E, Ali ES, Bernageau J, et al. Influence of lower-limb torsion on long-term outcomes of tibial valgus osteotomy for medial compartment knee osteoarthritis. J Bone Joint Surg Am. 2006;88(11):2439–47.

    Article  PubMed  Google Scholar 

  40. Panou A, Stanitski DF, Stanitski C, Peccati A, Portinaro NM. Intra-observer and inter-observer errors in CT measurement of torsional profiles of lower limbs: a retrospective comparative study. J Orthop Surg. 2015;10(1):67.

    Article  Google Scholar 

  41. Liodakis E, Doxastaki I, Chu K, Krettek C, Gaulke R, Citak M, et al. Reliability of the assessment of lower limb torsion using computed tomography: analysis of five different techniques. Skelet Radiol. 2012;41(3):305–11.

    Article  Google Scholar 

  42. Yan W, Xu X, Xu Q, Yan W, Sun Z, Jiang Q, et al. Femoral and tibial torsion measurements based on EOS imaging compared to 3D CT reconstruction measurements. Ann Transl Med. 2019;7(18):460–0.

  43. Buck FM, Guggenberger R, Koch P. Femoral and tibial torsion measurements with 3D models based on low- dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol. 2012;199:607–12.

    Article  Google Scholar 

  44. folinais D, Theklen P, Delin C, Radier C, Catonne Y, Lazennec J. Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop Traumatol Surg Res. 2013;99(5):509–16.

    Article  CAS  PubMed  Google Scholar 

  45. Shih YC, Chau MM, Arendt EA, Novacheck TF. Measuring lower extremity rotational alignment: a review of methods and case studies of clinical applications. J Bone Jt Surg. 2020;102(4):343–56 Review article which summarises the different radiological measurement techniques for both tibial and femoral rotation.

    Article  Google Scholar 

  46. Guenther KP, Tomczak R, Kessler S, Pfeiffer T, Puhl W. Measurement of femoral anteversion by magnetic resonance imaging--evaluation of a new technique in children and adolescents. Eur J Radiol. 1995;21(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  47. Muhamad AR, Freitas JM, Bomar JD, Dwek J, Hosalkar HS. CT and MRI lower extremity torsional profile studies: measurement reproducibility. J Child Orthop. 2012;6(5):391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rosskopf AB, Buck FM, Pfirrmann CWA, Ramseier LE. Femoral and tibial torsion measurements in children and adolescents: comparison of MRI and 3D models based on low-dose biplanar radiographs. Skelet Radiol. 2017;46(4):469–76.

    Article  Google Scholar 

  49. Drexler M, Dwyer T, Dolkart O, Goldstein Y, Steinberg EL, Chakravertty R, et al. Tibial rotational osteotomy and distal tuberosity transfer for patella subluxation secondary to excessive external tibial torsion: surgical technique and clinical outcome. Knee Surg Sports Traumatol Arthrosc. 2014;22(11):2682–9.

    Article  CAS  PubMed  Google Scholar 

  50. Cameron JC, Saha S. External tibial torsion: an underrecognized cause of recurrent patellar dislocation. Clin Orthop. 1996;328:177–84.

    Article  Google Scholar 

  51. Krengel WF, Staheli LT. Tibial rotational osteotomy for idiopathic torsion. A comparison of the proximal and distal osteotomy levels Clin Orthop 1992;(283):285–289.

  52. Schröter S, Elson DW, Ateschrang A, Ihle C, Stöckle U, Dickschas J, et al. Lower limb deformity analysis and the planning of an osteotomy. J Knee Surg. 2017;30(5):393–408.

    Article  PubMed  Google Scholar 

  53. Stevens PM, Gililland JM, Anderson LA, Mickelson JB, Nielson J, Klatt JW. Success of torsional correction surgery after failed surgeries for patellofemoral pain and instability. Strateg Trauma Limb Reconstr. 2014;9(1):5–12.

    Article  Google Scholar 

  54. Fouilleron N, Marchetti E, Autissier G, Gougeon F, Migaud H, Girard J. Proximal tibial derotation osteotomy for torsional tibial deformities generating patello-femoral disorders. Orthop Traumatol Surg Res. 2010;96(7):785–92.

    Article  CAS  PubMed  Google Scholar 

  55. Server F, Miralles RC, Garcia E, Soler JM. Medial rotational tibial osteotomy for patellar instability secondary to lateral tibial torsion. Int Orthop. 1996;20(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  56. Jud J, Singh S, Tondelli T, Fürnstahl P, Fucentese SF, Vlachopoulos L. Combined correction of tibial torsion and tibial tuberosity-trochlear groove distance by supratuberositary torsional osteotomy of the tibia. Am J Sports Med. 2020.

  57. Erschbamer M, Gerhard P, Klima H, Ellenrieder B, Zdenek-Lehnen K, Giesinger K. Distal tibial derotational osteotomy with external fixation to treat torsional deformities: a review of 71 cases. J Pediatr Orthop B. 2017;26(2):179–83.

    Article  PubMed  Google Scholar 

  58. Stotts AK, Stevens PM. Tibial rotational osteotomy with intramedullary nail fixation. Strateg Trauma Limb Reconstr. 2009;4(3):129–33.

    Article  Google Scholar 

  59. Jud L, Vlachopoulos L, Beeler S, Tondelli T, Fürnstahl P, Fucentese SF. Accuracy of three dimensional-planned patient-specific instrumentation in femoral and tibial rotational osteotomy for patellofemoral instability. Int Orthop [Internet]. 2020 13 [cited 2020 Mar 28]; Available from: https://doi.org/10.1007/s00264-020-04496-y

  60. Strecker W, Dickschas J. Torsional osteotomy: operative treatment of patellofemoral maltracking. Oper Orthop Traumatol. 2015;27:505–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn Snow.

Ethics declarations

Conflict of Interest

Martyn Snow declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snow, M. Tibial Torsion and Patellofemoral Pain and Instability in the Adult Population: Current Concept Review. Curr Rev Musculoskelet Med 14, 67–75 (2021). https://doi.org/10.1007/s12178-020-09688-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-020-09688-y

Keywords

Navigation