Skip to main content
Log in

Improving the Biogas Potential of Rice Straw Through Microwave-Assisted Ammoniation Pretreatment During Anaerobic Digestion

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Rice straw is an abundant lignocellulosic biomass used to produce biogas. However, its resistant structure hinders biogas production. In this study, three pretreatments, microwave, ammoniation, and microwave-assisted ammoniation (MAA), were evaluated for their use in improving biogas production from rice straw. After an 18-day digestion, methane production by rice straw pretreated with MAA was 281.56 mL/g (volatile solids of substrate), which was 25.43%, 7.96%, and 18.18% more than that produced following the control, microwave, and ammoniation pretreatments, respectively. These increases were mainly attributed to the change in the resistant structure of rice straw following the MAA pretreatment and a more stable anaerobic digestion system. The degradation rate for the volatile solids of the rice straw pretreated with MAA during anaerobic digestion was 71.20%, which was 4.71%, and 4.86% higher than the rates observed using microwave and ammoniation pretreatments, respectively. In addition, the MAA method had a T90 fermentation cycle of 6 days, which was 33.3%, 25.0%, and 33.3% shorter than those for the control, microwave, and ammoniation methods, respectively. This technology shows the potential to enhance biogas production from the anaerobic digestion of rice straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data and materials are available from the corresponding author and may be provided on request.

References

  1. Ajmi AN, Hammoudeh S, Nguyen DK, Sato JR (2015) On the relationships between CO2 emissions, energy consumption and income: the importance of time variation. Energy Econ 49:629–638. https://doi.org/10.1016/j.eneco.2015.02.007

    Article  Google Scholar 

  2. Capellán-Pérez I, Mediavilla M, de Castro C, Carpintero Ó, Miguel LJ (2014) Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77:641–666. https://doi.org/10.1016/j.energy.2014.09.063

    Article  Google Scholar 

  3. Hamelin L, Wesnæs M, Wenzel H, Petersen BM (2011) Environmental consequences of future biogas technologies based on separated slurry. Environ Sci Technol 45(13):5869–5877. https://doi.org/10.1021/es200273j

    Article  CAS  PubMed  Google Scholar 

  4. Pan S, Liu Q, Wen C, Li Z, Du L, Wei Y (2020) Producing biogas from rice straw: kinetic analysis and microbial community dynamics. Bio Energ Res:1–11. https://doi.org/10.1007/s12155-020-10226-4

  5. Li H, Cao Y, Wang X, Ge X, Li B, Jin C (2017) Evaluation on the production of food crop straw in China from 2006 to 2014. Bio Energ Res 10(3):949–957. https://doi.org/10.1007/s12155-017-9845-4

    Article  Google Scholar 

  6. He Y, Pang Y, Li X, Liu Y, Li R, Zheng M (2009) Investigation on the changes of main compositions and extractives of rice straw pretreated with sodium hydroxide for biogas production. Energy Fuel 23(4):2220–2224. https://doi.org/10.1021/ef8007486

    Article  CAS  Google Scholar 

  7. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101(19):7523–7528. https://doi.org/10.1016/j.biortech.2010.04.060

    Article  CAS  PubMed  Google Scholar 

  8. Alexandropoulou M, Antonopoulou G, Fragkou E, Ntaikou I, Lyberatos G (2017) Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J Environ Manag 203:704–713. https://doi.org/10.1016/j.jenvman.2016.04.006

    Article  CAS  Google Scholar 

  9. Lu S-G, Tsuyoshi I, Ukita M, Sekine M (2007) Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. J Environ Sci (China) 19(4):416–420. https://doi.org/10.1016/S1001-0742(07)60069-2

    Article  CAS  Google Scholar 

  10. Thostenson E, Chou T-W (1999) Microwave processing: fundamentals and applications. Compos Part A Appl Sci Manuf 30(9):1055–1071. https://doi.org/10.1016/S1359-835X(99)00020-2

    Article  Google Scholar 

  11. Chen C, Yang S, Bu X (2019) Microwave drying effect on pyrolysis characteristics and kinetics of microalgae. Bio Energ Res 12(2):400–408. https://doi.org/10.1007/s12155-019-09970-z

    Article  CAS  Google Scholar 

  12. Kainthola J, Shariq M, Kalamdhad AS, Goud VV (2019) Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. J Environ Manag 232:188–196. https://doi.org/10.1016/j.jenvman.2018.11.052

    Article  CAS  Google Scholar 

  13. Fodah AEM, Ghosal MK, Behera D (2021) Studies on microwave-assisted pyrolysis of rice straw using solar photovoltaic power. Bio Energ Res 14(1):190–208. https://doi.org/10.1007/s12155-020-10172-1

    Article  CAS  Google Scholar 

  14. Dao TAT, Webb HK, Malherbe F (2021) Optimization of pectin extraction from fruit peels by response surface method: conventional versus microwave-assisted heating. Food Hydrocoll 113:106475. https://doi.org/10.1016/j.foodhyd.2020.106475

    Article  CAS  Google Scholar 

  15. Xu J-K, Sun Y-C, Sun R-C (2014) Structural and hydrolysis characteristics of cypress pretreated by ionic liquids in a microwave irradiation environment. Bio Energ Res 7(4):1305–1316. https://doi.org/10.1007/s12155-014-9464-2

    Article  CAS  Google Scholar 

  16. Rokicka M, Zieliński M, Dudek M, Dębowski M (2020) Effects of ultrasonic and microwave pretreatment on lipid extraction of microalgae and methane production from the residual extracted biomass. Bio Energ Res:1–9. https://doi.org/10.1007/s12155-020-10202-y

  17. Qian X, Shen G, Wang Z, Zhang X, Chen X, Tang Z, Lei Z, Zhang Z (2019) Enhancement of high solid anaerobic co-digestion of swine manure with rice straw pretreated by microwave and alkaline. Bioresour Technol Rep 7:100208. https://doi.org/10.1016/j.biteb.2019.100208

    Article  Google Scholar 

  18. Kostas ET, Beneroso D, Robinson JP (2017) The application of microwave heating in bioenergy: a review on the microwave pre-treatment and upgrading technologies for biomass. Renew Sus Energ Rev 77:12–27. https://doi.org/10.1016/j.rser.2017.03.135

    Article  CAS  Google Scholar 

  19. Yu Q, Liu R, Li K, Ma R (2019) A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew Sus Energ Rev 107:51–58. https://doi.org/10.1016/j.rser.2019.02.020

    Article  CAS  Google Scholar 

  20. Rodriguez C, Alaswad A, Benyounis K, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sus Energ Rev 68:1193–1204. https://doi.org/10.1016/j.rser.2016.02.022

    Article  CAS  Google Scholar 

  21. Abbasi T, Tauseef S, Abbasi S (2012) Biogas and Biogas Energy: an introduction. Biogas Energy. Springer, pp 1–10. https://doi.org/10.1007/978-1-4614-1040-9_1

  22. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sus Energ Rev 15(1):821–826. https://doi.org/10.1016/j.rser.2010.07.042

    Article  CAS  Google Scholar 

  23. Li X, Dang F, Zhang Y, Zou D, Yuan H (2015) Anaerobic digestion performance and mechanism of ammoniation pretreatment of corn stover. Bioresources 10 (3):5777–5790. https://doi.org/10.15376/biores.10.3.5777-5790

  24. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  CAS  PubMed  Google Scholar 

  25. Liu Q, Pan S, Long Z, Li Z, Du L, Wei Y (2020) Assessment of fresh and dry rice straw for biogas potential by anaerobic digestion. Bio Energ Res 13(3):845–852. https://doi.org/10.1007/s12155-020-10106-x

    Article  CAS  Google Scholar 

  26. Siedlecka EM, Kumirska J, Ossowski T, Glamowski P, Gołębiowski M, Gajdus J, Kaczyński Z, Stepnowski P (2008) Determination of volatile fatty acids in environmental aqueous samples. Pol J Environ Stud 17(3):351–356

    CAS  Google Scholar 

  27. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  28. Pv VS, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  29. Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  30. Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011) Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol 102(12):6750–6756. https://doi.org/10.1016/j.biortech.2011.03.107

    Article  CAS  PubMed  Google Scholar 

  31. Kainthola J, Kalamdhad AS, Goud VV (2019) Optimization of methane production during anaerobic co-digestion of rice straw and hydrilla verticillata using response surface methodology. Fuel 235:92–99. https://doi.org/10.1016/j.fuel.2018.07.094

    Article  CAS  Google Scholar 

  32. Khalid MJ, Waqas A, Nawaz I (2019) Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw. Bioresour Technol 275:288–296. https://doi.org/10.1016/j.biortech.2018.12.051

    Article  CAS  PubMed  Google Scholar 

  33. Zhong W, Zhang Z, Luo Y, Sun S, Qiao W, Xiao M (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol 102(24):11177–11182. https://doi.org/10.1016/j.biortech.2011.09.077

    Article  CAS  PubMed  Google Scholar 

  34. Pan S, Wen C, Liu Q, Chi Y, Mi H, Li Z, Du L, Huang R, Wei Y (2019) A novel hydraulic biogas digester controlling the scum formation in batch and semi-continuous tests using banana stems. Bioresour Technol 286:121372. https://doi.org/10.1016/j.biortech.2019.121372

    Article  CAS  PubMed  Google Scholar 

  35. Kaur A, Kuhad RC (2019) Valorization of rice straw for ethanol production and lignin recovery using combined acid-alkali pre-treatment. Bio Energ Res 12(3):570–582. https://doi.org/10.1007/s12155-019-09988-3

    Article  CAS  Google Scholar 

  36. Jung HJG, Himmelsbach DS (1989) Isolation and characterization of wheat straw lignin. J Agric Food Chem 37(1):81–87. https://doi.org/10.1021/jf00085a019

    Article  CAS  Google Scholar 

  37. Lawther JM, Sun R, Banks W (1996) Fractional characterization of wheat straw lignin components by alkaline nitrobenzene oxidation and FT-IR spectroscopy. J Agric Food Chem 44(5):1241–1247. https://doi.org/10.1021/jf9502764

    Article  CAS  Google Scholar 

  38. He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energ Fuel 22(4):2775–2781. https://doi.org/10.1021/ef8000967

    Article  CAS  Google Scholar 

  39. Bekiaris G, Lindedam J, Peltre C, Decker SR, Turner GB, Magid J, Bruun S (2015) Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy. Biotechnol Biofuels 8(1):85. https://doi.org/10.1186/s13068-015-0267-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crops Prod 41:356–364. https://doi.org/10.1016/j.indcrop.2012.04.049

    Article  CAS  Google Scholar 

  41. Guan R, Li X, Wachemo AC, Yuan H, Liu Y, Zou D, Zuo X, Gu J (2018) Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment. Sci Total Environ 637:9–17. https://doi.org/10.1016/j.scitotenv.2018.04.366

    Article  CAS  PubMed  Google Scholar 

  42. Liang C, Marchessault R (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.-1. J Polym Sci 39(135):269–278. https://doi.org/10.1002/pol.1959.1203913521

    Article  CAS  Google Scholar 

  43. Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573. https://doi.org/10.1016/j.carbpol.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  44. Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresour Technol 101(12):4343–4348. https://doi.org/10.1016/j.biortech.2010.01.083

    Article  CAS  PubMed  Google Scholar 

  45. Kim MJ, Kim SH (2017) Minimization of diauxic growth lag-phase for high-efficiency biogas production. J Environ Manag 187:456–463. https://doi.org/10.1016/j.jenvman.2016.11.002

    Article  CAS  Google Scholar 

  46. Gu Y, Chen X, Liu Z, Zhou X, Zhang Y (2014) Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour Technol 158:149–155. https://doi.org/10.1016/j.biortech.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  47. Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40(11):3412–3418. https://doi.org/10.1016/j.procbio.2005.01.025

    Article  CAS  Google Scholar 

  48. Steinhaus B, Garcia ML, Shen AQ, Angenent LT (2007) A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl Environ Microbiol 73(5):1653–1658. https://doi.org/10.1128/AEM.01827-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neshat SA, Mohammadi M, Najafpour GD, Lahijani P (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sus Energ Rev 79:308–322. https://doi.org/10.1016/j.rser.2017.05.137

    Article  CAS  Google Scholar 

  50. Wachemo AC, Tong H, Yuan H, Zuo X, Korai RM, Li X (2019) Continuous dynamics in anaerobic reactor during bioconversion of rice straw: Rate of substance utilization, biomethane production and changes in microbial community structure. Sci Total Environ 687:1274–1284. https://doi.org/10.1016/j.scitotenv.2019.05.411

    Article  CAS  PubMed  Google Scholar 

  51. Raposo F, Banks C, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41(6):1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012

    Article  CAS  Google Scholar 

  52. Lin Y, Wang D, Wu S, Wang C (2009) Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Hazard Mater 170(1):366–373. https://doi.org/10.1016/j.jhazmat.2009.04.086

    Article  CAS  PubMed  Google Scholar 

  53. Klimiuk E, Pokoj T, Budzyński W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol 101(24):9527–9535. https://doi.org/10.1016/j.biortech.2010.06.130

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the Science and Technology Major Project of Guangxi (Grant No. AB17190534) and the Central Government Directs Special Funds for Local Science and Technology Development Projects (Grant No. ZY1949015).

Author information

Authors and Affiliations

Authors

Contributions

The study was conducted from June 2019 to June 2020. YTW and ZCL conceived and designed this research. QQL, SYP, LZ, and LCF performed the experiments. QQL, SYP, LZ, LCF, and LQD analyzed and interpreted the data. QQL and SYP composed the manuscript. YTW and ZCL improved the manuscript. All authors reviewed and revised the manuscript prior to publication.

Corresponding author

Correspondence to Yutuo Wei.

Ethics declarations

Ethical Approval and Consent to Participate

This article does not contain any studies using animals. All authors consented to participate in the research.

Consent for Publication

All authors consent to publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 1.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Pan, S., Zhou, L. et al. Improving the Biogas Potential of Rice Straw Through Microwave-Assisted Ammoniation Pretreatment During Anaerobic Digestion. Bioenerg. Res. 15, 1240–1250 (2022). https://doi.org/10.1007/s12155-021-10299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10299-9

Keywords

Navigation