Skip to main content
Log in

Theoretical study of electron transfer process between fullerenes and neurotransmitters; acetylcholine, dopamine, serotonin and epinephrine in nanostructures [neurotransmitters].C n complexes

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

Neurotransmitters are the compounds which allow the transmission of signals from one neuron to the next across synapses. They are the brain chemicals that communicate information throughout brain and body. Fullerenes are a family of carbon allotropes, molecules composed entirely of carbon, that take the forms of spheres, ellipsoids, and cylinders. Various empty carbon fullerenes (Cn) with different carbon atoms have been obtained and investigated. Topological indices have been successfully used to construct effective and useful mathematical methods to establish clear relationships between structural data and the physical properties of these materials. In this study, the number of carbon atoms in the fullerenes was used as an index to establish a relationship between the structures of neurotransmitters (NTs) acetylcholine (AC) 1, dopamine (DP) 2, serotonin (SE) 3, and epinephrine (EP) 4 as the well-known redox systems and fullerenes C n (n = 60, 70, 76, 82, and 86) which create [NT].Cn; A-1 to A-5 up to D-1 to D-5. The relationship between the number of carbon atoms and the free energy of electron transfer (ΔG et(n); n = 1–4) is assessed using the Rehm-Weller equation for A-1 to A-5 up to D-1 to D-5 supramolecular [NT].Cn complexes. The calculations are presented for the four reduction potentials (Red. E 1 to Red. E 4 ) of fullerenes C n . The results were used to calculate the four free energy values of electron transfer (ΔG et(1) to ΔG et(4)) of the supramolecular complexes A-1 to A-8 up to D-1 to D-8 for fullerenes C60 to C120. The first to fourth free activation energy values of electron transfer and the maximum wavelength of the electron transfers, ΔG # et(n) and λ et (n = 1–4), respectively, were also calculated in this study for A-1 to A-8 up to D-1 to D-8 in accordance with the Marcus theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sapolsky R. (2005) Biology and human behavior: the neurological origins of individuality, 2nd edition. The Teaching Company, Chantilly

  2. Dorland’s Illustrated Medical Dictionary, (2011) Health Sciences Division, 32nd Ed, Elsevier Publisher

  3. Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26(11):578–586

    Article  CAS  Google Scholar 

  4. Goldberg JA, Reynolds JNJ (2011) Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 198:27–43

    Article  CAS  Google Scholar 

  5. Boeree CG (2009) Neurotransmitters. http://webspace.ship.edu/cgboer/genpsyneurotransmitters.html

  6. Campbell, N. A.; Reece, J. B (2002) 48. Biology (6th ed.). Pearson Education, Inc., San Francisco, CA, pp. 1037

  7. Platt B, Riedel G (2011) Behav Brain Res 221(2):499–504

    Article  CAS  Google Scholar 

  8. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psych 148:1474–1486

    Article  CAS  Google Scholar 

  9. Young SN (2002) How to increase serotonin in the human brain without drugs. Rev Psychiatr Neurosci 32(6):394–399

    Google Scholar 

  10. Berecek Kh BM, Brody MJ (1982) Evidence for a neurotransmitter role for epinephrine derived from the adrenal medulla. Am J Physiol 242(4):H593–H601

    Google Scholar 

  11. Cannon WB (1929) Am J Physiol 89:84–107

    CAS  Google Scholar 

  12. von Bohlen und Halbach, O, Dermietzel, R (2006) Neurotransmitters and neuromodulators: handbook of receptors and biological effects. Wiley-VCH, Germany, p. 125

  13. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  14. Kroto HW (1987) Nature 329:529

    Article  CAS  Google Scholar 

  15. Shen H (2007) Mol Phys 105(17-18):2405

    Article  CAS  Google Scholar 

  16. Kimura K, Ikeda N, Maruyama Y, Okazaki T, Shinohara H, Bandow S, Iijima S (2003) Chem Phys Lett 379:340

    Article  CAS  Google Scholar 

  17. Smith BW, Monthioux M, Luzzi DE (1998) Nature 396:3239

    Google Scholar 

  18. Miyake T, Saito S (2003) Solid State Commun 125:201

    Article  CAS  Google Scholar 

  19. Zhang M, Yudasaka M, Bandow S, Iijima S (2003) Chem Phys Lett 369:680

    Article  CAS  Google Scholar 

  20. Kavan L, Dunsch L, Kataura H (2004) Carbon 42:1011

    Article  CAS  Google Scholar 

  21. Sherigara BS, Kutner W, D’Souza F (2003) Electroanalysis 15:753

    Article  CAS  Google Scholar 

  22. Haufler RE, Conceicao J, Chibante LPF, Chai Y, Byrne NE, Flanagan S et al (1990) J Phys Chem 94:8634

    Article  CAS  Google Scholar 

  23. Xie Q, Perez-Codero E, Echegoyen L (1992) J Am Chem Soc 114:3978

    Article  CAS  Google Scholar 

  24. Jehoulet C, Obeng YO, Kim YT, Zhou F, Bard AJ (1992) J Am Chem Soc 114:4237

    Article  CAS  Google Scholar 

  25. Janda P, Krieg T, Dunsch L (1998) Adv Mater 17:1434

    Article  Google Scholar 

  26. Touzik A, Hermann H, Janda P, Dunsch L, Wetzig K (2002) Europhys Lett 60:411

    Article  CAS  Google Scholar 

  27. Tsuchiya T., Shimizu T., Kamigata N. (2001) J Am Chem Soc 123:11534

  28. Tsuchiya T., Kurihara H., Sato K., Wakahara T Akasaka T., Shimizu T., Kamigata N., Mizorogi N., Nagase S (2006) Chem Commun 20:3585

  29. Anderson MR, Dorn HC, Stevenson SA (2000) Carbon 38:1663

    Article  CAS  Google Scholar 

  30. Cooper SR (1998) Acc Chem Res 21:141

    Article  Google Scholar 

  31. Taherpour AA (2008) Full Nanotu Carb Nanostruc 16:196

    Article  CAS  Google Scholar 

  32. Taherpour AA (2008) Full Nanotu Carb Nanostruc 15:279

    Article  Google Scholar 

  33. Taherpour AA (2007) Full Nanotu Carb Nanostruc 15:405

    Article  CAS  Google Scholar 

  34. Taherpour AA, Talebi-Haftadori Z (2013) Int Nano Lett 3(22):1

    Google Scholar 

  35. Taherpour AA, Asadi T (2011) Full Nanotu Carb Nanostruc 19:166

    Article  CAS  Google Scholar 

  36. Taherpour AA, Maleki M (2010) Anal Lett 43:658–673

    Article  CAS  Google Scholar 

  37. Taherpour AA (2010) Phosphorus Sulfur Silicon 185:422–432

    Article  CAS  Google Scholar 

  38. Taherpour AA (2010) Int J Green Nanotech Phys Chem 1(2):97–109

    Article  Google Scholar 

  39. Taherpour AA, Keyvan F (2010) Phosph Sulf Silic Relat Elem 185(8):1604–1614

    Article  CAS  Google Scholar 

  40. Taherpour AA (2009) Chem Phys Lett 483:233–240

    Article  CAS  Google Scholar 

  41. Taherpour AA, Narian D, Taherpour A (2015) J Nanostruct Chem 5(2):153

    Article  Google Scholar 

  42. Taherpour AA, Lajevardi P (2011) Int J Electrochem Sci 6:5482

    CAS  Google Scholar 

  43. Taherpour AA, Tayebi-Suraki M, Mahdizadeh N (2012) Eur J Chem 3(3):340

    Article  CAS  Google Scholar 

  44. Du YP, Liang YZ, Li BY, Xu CJ (2002) J Chem Inf Cmput Sci 42:1128

    Google Scholar 

  45. Randic M (1975) J Am Chem Soc 97:6609

    Article  CAS  Google Scholar 

  46. Bolboaca SD, Jantschi L (2007) Int J Mol Sci 8:335

    Article  CAS  Google Scholar 

  47. Slanina Z, Uhlik F, Lee SL, Osawa E (2001) MATCH Commun Math Comput Chem 44:335

    CAS  Google Scholar 

  48. Taherpour AA, Shafiei F (2005) J Mol Struct Theochem 726:183

    Article  CAS  Google Scholar 

  49. Taherpour AA (2009) Full Nanotu Carb Nanostruc 17(1):26

    Article  CAS  Google Scholar 

  50. Taherpour AA, Maleki-Nureini M (2013) Full Nanotu Carb Nanostruc 21(6):485

    Article  CAS  Google Scholar 

  51. Taherpour AA, Jalajerdi R (2013) Full Nanotu Carb Nanostruc 21(7):653

    Article  CAS  Google Scholar 

  52. Taherpour AA (2009) Chem Phys Lett 469:135

    Article  CAS  Google Scholar 

  53. Taherpour AA (2009) J Phys Chem C 113(14):5402

    Article  CAS  Google Scholar 

  54. Taherpour AA, Mohammadinasab E (2010) Full Nanotu Carb Nanostruc 18:72–86

    Article  CAS  Google Scholar 

  55. Slanina Z, Chao MC, Lee SL, Gutman I (1997) J Serb Chem Soc 62(3):211

    CAS  Google Scholar 

  56. Plavsic D, Nikolic S, Trinajstic N, Mihalic Z (1993) J Math Chem 12:235

    Article  CAS  Google Scholar 

  57. Rehm D, Weller A (1970) Isr J Chem 8:259

    Article  CAS  Google Scholar 

  58. Marcus RA (1993) Rev Modern Phys 65(3):599–610

    Article  CAS  Google Scholar 

  59. M. Andrea (2008) Marcus theory for electron transfer a short introduction MPIP-Journal Club-Mainz-January 29, 2008

  60. Barbara PF, Phys J (1996) Chemistry 100:13148–13161

    CAS  Google Scholar 

  61. Newton MD (1991) Chem Ren 91:767–792

    Article  CAS  Google Scholar 

  62. Jortner J, Freed KF (1970) J Chem Phys 52:6272–6291

    Article  Google Scholar 

  63. Marcus RA (1965) J Chem Phys 43:679

    Article  CAS  Google Scholar 

  64. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

    Article  CAS  Google Scholar 

  65. Kuzmin M.G. (2000) XVIIth IUPAC symposium on photochemistry, Dresden, German, July 22–27 2000, Book of Abstracts, p. 372

  66. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  67. Jin GP, Chen Q-Z, Ding Y-F, He J-B (2007) Electrochimi Acta 52:2535–2541

    Article  CAS  Google Scholar 

  68. Winter E, Codognoto L, Rath S (2006) Electrochimi Acta 51:1282–1288

    Article  CAS  Google Scholar 

  69. Iotov PI, Kalcheva SV (1998) J Electroanal Chem 44:219

    Google Scholar 

  70. Fichter F, Ackerman F (1919) Helv Chem Acta 2:583

    Article  CAS  Google Scholar 

  71. Lapuente R, Cases F, Garćes P, Morallón E, Vázquez JL (1998) J Electroanal Chem 45:1163

    Google Scholar 

  72. Koile KC, Johnson DC (1979) Anal Chem 51:741

    Article  CAS  Google Scholar 

  73. Yi H, Wu K, Hu S, Cui D (2001) Talanta 55:1205

    Article  CAS  Google Scholar 

  74. Babai M, Gottesfeld S (1980) Surf Sci 96:461

    Article  CAS  Google Scholar 

  75. Gattrell M, Kirk DM (1993) J Electrochem Soc 140:1534

    Article  CAS  Google Scholar 

  76. Shibli SMA, Beenakumari KS, Suma ND (2006) Biosens Bioelectron 22:633–638

    Article  CAS  Google Scholar 

  77. Barnes EO, O’Mahony AM, Aldous L, Hardacre C, Compton RG (2010) J Electroanaly Chem 646:11–17

    Article  CAS  Google Scholar 

  78. Irazu S, Unceta N, Sampedro MC, Goicolea MA, Barrio RJ (2001) Analyst 126:495–500

    Article  Google Scholar 

  79. Suzuki T, Kikuchi K, Oguri F, Nakao Y, Suzuki S, Achiba Y, Yamamoto K, Funasaka H, Takahashi T (1996) Tetrahedron 52(14):4973

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the colleagues of the Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran, and the Research and Computational Lab of Theoretical Chemistry and Nano Structures of Razi University Kermanshah-Iran and Health Technology Center, Kermanshah University of Medical Sciences, Kermanshah, Iran for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avat Arman Taherpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherpour, A.A., Rizehbandi, M., Jahanian, F. et al. Theoretical study of electron transfer process between fullerenes and neurotransmitters; acetylcholine, dopamine, serotonin and epinephrine in nanostructures [neurotransmitters].C n complexes. J Chem Biol 9, 19–29 (2016). https://doi.org/10.1007/s12154-015-0139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-015-0139-z

Keywords

Navigation