Skip to main content

Advertisement

Log in

Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the prognostic value of 18F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment.

Methods

We retrospectively analyzed the pre-treatment 18F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (n = 166) and digital (n = 51) PET cohorts. 18F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively.

Results

In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUVmax, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p < 0.001) and digital PET cohorts (HR = 1.284, p = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p < 0.001, c-index = 0.708 and HR = 1.256, p = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively).

Conclusions

Combining 18F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398:535–54.

    Article  PubMed  Google Scholar 

  3. Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health. 2019;85:8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shea M, Costa DB, Rangachari D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Ther Adv Respir Dis. 2015;10:113–29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40:611–25.

    Article  CAS  PubMed  Google Scholar 

  6. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378:113–25.

    Article  CAS  PubMed  Google Scholar 

  7. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382:41–50.

    Article  CAS  PubMed  Google Scholar 

  8. Kim G, Kim J, Cha H, Park WY, Ahn JS, Ahn MJ, et al. Metabolic radiogenomics in lung cancer: associations between FDG PET image features and oncogenic signaling pathway alterations. Sci Rep. 2020;10:13231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elzakra N, Kim Y. HIF-1alpha metabolic pathways in human Cancer. Adv Exp Med Biol. 2021;1280:243–60.

    Article  CAS  PubMed  Google Scholar 

  10. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11:2785–808.

    Article  CAS  PubMed  Google Scholar 

  11. Ng KS, King Sun C, Boom Ting K, Ting Kun AY. Prognostic factors of EGFR-mutated metastatic adenocarcinoma of lung. Eur J Radiol. 2020;123: 108780.

    Article  PubMed  Google Scholar 

  12. Aguloglu N, Akyol M, Komek H, Katgi N. The prognostic value of 18F-FDG PET/ct metabolic parameters in predicting treatment response before EGFR TKI treatment in patients with advanced lung adenocarcinoma. Mol Imaging Radionucl Ther. 2022;31:104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Afshar P, Mohammadi A, Tyrrell PN, Cheung P, Sigiuk A, Plataniotis KN, et al. [Formula: see text]: deep learning-based radiomics for the time-to-event outcome prediction in lung cancer. Sci Rep. 2020;10:12366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lue KH, Chen YH, Chu SC, Chang BS, Lin CB, Chen YC, et al. A comparison of 18 F-FDG PET-based radiomics and deep learning in predicting regional lymph node metastasis in patients with resectable lung adenocarcinoma: a cross-scanner and temporal validation study. Nucl Med Commun. 2023;44:1094–105.

    Article  CAS  PubMed  Google Scholar 

  15. Tau N, Stundzia A, Yasufuku K, Hussey D, Metser U. Convolutional neural networks in predicting nodal and distant metastatic potential of newly diagnosed non-small cell lung cancer on FDG PET images. AJR Am J Roentgenol. 2020;215:192–7.

    Article  PubMed  Google Scholar 

  16. van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44:4–16.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.

    Article  PubMed  Google Scholar 

  18. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) Edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:39–51.

    Article  PubMed  Google Scholar 

  19. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605.

    Article  PubMed  Google Scholar 

  20. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what, why, how, when and where? Clin Kidney J. 2021;14:49–58.

    Article  PubMed  Google Scholar 

  21. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  22. Chen YH, Chen YC, Lue KH, Chu SC, Chang BS, Wang LY, et al. Glucose metabolic heterogeneity correlates with pathological features and improves survival stratification of resectable lung adenocarcinoma. Ann Nucl Med. 2023;37:139–50.

    Article  CAS  PubMed  Google Scholar 

  23. Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59:1321–8.

    Article  CAS  PubMed  Google Scholar 

  24. Orlhac F, Eertink JJ, Cottereau AS, Zijlstra JM, Thieblemont C, Meignan M, et al. A guide to ComBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63:172–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tsutsui Y, Daisaki H, Akamatsu G, Umeda T, Ogawa M, Kajiwara H, et al. Multicentre analysis of PET SUV using vendor-neutral software: the Japanese harmonization technology (J-Hart) study. EJNMMI Res. 2018;8:83.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Daisaki H, Kitajima K, Nakajo M, Watabe T, Ito K, Sakamoto F, et al. Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies. Sci Rep. 2021;11:8517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shao X, Niu R, Shao X, Gao J, Shi Y, Jiang Z, et al. Application of dual-stream 3D convolutional neural network based on (18)F-FDG PET/CT in distinguishing benign and invasive adenocarcinoma in ground-glass lung nodules. EJNMMI Phys. 2021;8:74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep. 2017;7:46479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen S, Han X, Tian G, Cao Y, Zheng X, Li X, et al. Using stacked deep learning models based on PET/CT images and clinical data to predict EGFR mutations in lung cancer. Front Med (Lausanne). 2022;9:1041034.

    Article  PubMed  Google Scholar 

  30. Yang Y, Zheng B, Li Y, Li Y, Ma X. Computer-aided diagnostic models to classify lymph node metastasis and lymphoma involvement in enlarged cervical lymph nodes using PET/CT. Med Phys. 2023;50:152–62.

    Article  PubMed  Google Scholar 

  31. Wanichwecharungruang B, Kaothanthong N, Pattanapongpaiboon W, Chantangphol P, Seresirikachorn K, Srisuwanporn C, et al. Deep learning for anterior segment optical coherence tomography to predict the presence of plateau iris. Transl Vis Sci Technol. 2021;10:7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Venugopal VK, Vaidhya K, Murugavel M, Chunduru A, Mahajan V, Vaidya S, et al. Unboxing AI—radiological insights into a deep neural network for lung nodule characterization. Acad Radiol. 2020;27:88–95.

    Article  PubMed  Google Scholar 

  33. Huff DT, Weisman AJ, Jeraj R. Interpretation and visualization techniques for deep learning models in medical imaging. Phys Med Biol. 2021;66:04TR01.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zeiler MD, Fergus R (2014) Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014: 13th European Conference, Proceedings, Part I. Berlin: Springer International Publishing

  35. Roengvoraphoj O, Kasmann L, Eze C, Taugner J, Gjika A, Tufman A, et al. Maximum standardized uptake value of primary tumor (SUVmax_PT) and horizontal range between two most distant PET-positive lymph nodes predict patient outcome in inoperable stage III NSCLC patients after chemoradiotherapy. Transl Lung Cancer Res. 2020;9:541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nair VS, Gevaert O, Davidzon G, Napel S, Graves EE, Hoang CD, et al. Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res. 2012;72:3725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Sun Z, Zhao W. Geng B [S100A10 promotes proliferation and invasion of lung adenocarcinoma cells by activating the Akt-mTOR signaling pathway]. Nan Fang Yi Ke Da Xue Xue Bao. 2023;43:733–40.

    CAS  PubMed  Google Scholar 

  38. Goodman A, Mahmud W, Buckingham L. Gene variant profiles and tumor metabolic activity as measured by FOXM1 expression and glucose uptake in lung adenocarcinoma. J Pathol Transl Med. 2020;54:237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001;85:881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torresano L, Nuevo-Tapioles C, Santacatterina F, Cuezva JM. Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165721.

    Article  CAS  PubMed  Google Scholar 

  41. Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjorklund G. Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol. 2021;95:1161–78.

    Article  CAS  PubMed  Google Scholar 

  42. Chen YH, Chu SC, Wang LY, Wang TF, Lue KH, Lin CB, et al. Prognostic value of combing primary tumor and nodal glycolytic-volumetric parameters of 18F-FDG PET in patients with non-small cell lung cancer and regional lymph node metastasis. Diagnostics (Basel). 2021;11:1065.

    Article  CAS  PubMed  Google Scholar 

  43. Pellegrino S, Fonti R, Pulcrano A, Del Vecchio S. PET-based volumetric biomarkers for risk stratification of non-small cell lung cancer patients. Diagnostics (Basel). 2021;11:210.

    Article  CAS  PubMed  Google Scholar 

  44. Mahmoud HA, Oteify W, Elkhayat H, Zaher AM, Mohran TZ, Mekkawy N. Volumetric parameters of the primary tumor and whole-body tumor burden derived from baseline (18)F-FDG PET/CT can predict overall survival in non-small cell lung cancer patients: initial results from a single institution. Eur J Hybrid Imaging. 2022;6:37.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Park SY, Yoon J-K, Park KJ, Lee SJ. Prediction of occult lymph node metastasis using volume-based PET parameters in small-sized peripheral non-small cell lung cancer. Cancer Imaging. 2015;15:21.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Sheng J, Kang S, Fang W, Yan Y, Hu Z, et al. Patients with exon 19 deletion were associated with longer progression-free survival compared to those with L858R mutation after first-line EGFR-TKIs for advanced non-small cell lung cancer: a meta-analysis. PLoS ONE. 2014;9:e107161.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Koyama N, Watanabe Y, Iwai Y, Kawamura R, Miwa C, Nagai Y, et al. Distinct benefit of overall survival between patients with non-small-cell lung cancer harboring EGFR Exon 19 deletion and exon 21 L858R substitution. Chemotherapy. 2017;62:151–8.

    Article  CAS  PubMed  Google Scholar 

  48. Masago K, Kuroda H, Fujita S, Sasaki E, Takahashi Y, Shinohara S, et al. Biological difference between L858R and Exon 19 deletion contributes to recurrence-free survival of resected non-small cell lung cancer. Oncology. 2023;101:117–25.

    Article  CAS  PubMed  Google Scholar 

  49. Bi JH, Tuo JY, Xiao YX, Tang DD, Zhou XH, Jiang YF, et al. Observed and relative survival trends of lung cancer: a systematic review of population-based cancer registration data. Thorac Cancer. 2024;15:142–51.

    Article  PubMed  Google Scholar 

  50. Saha E, Guebila MB, Fanfani V, Fischer J, Shutta KH, Mandros P, et al. Gene regulatory networks reveal sex difference in lung adenocarcinoma. bioRxiv. 2023. https://doi.org/10.1101/2023.09.22.559001.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zeng L, Xiao L, Jiang W, Yang H, Hu D, Xia C, et al. Investigation of efficacy and acquired resistance for EGFR-TKI plus bevacizumab as first-line treatment in patients with EGFR sensitive mutant non-small cell lung cancer in a Real world population. Lung Cancer. 2020;141:82–8.

    Article  PubMed  Google Scholar 

  52. Xu Z, Hao X, Lin L, Li J, Xing P. Concurrent chemotherapy and first-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) with or without an antiangiogenic agent as first-line treatment in advanced lung adenocarcinoma harboring an EGFR mutation. Thorac Cancer. 2021;12:2233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol. 2020;38:115–23.

    Article  CAS  PubMed  Google Scholar 

  54. Wallis D, Soussan M, Lacroix M, Akl P, Duboucher C, Buvat I. An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients. Eur J Nucl Med Mol Imaging. 2022;49:881–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the staff of Cancer Center of Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation for their kind assistance in retrieving the data of patients with lung cancer. We are also grateful for the grants provided by the Buddhist Tzu Chi Medical Foundation (TCMF-A 107-01-02(112) and TCMF-A 107-01-02(113)) and National Science and Technology Council in Taiwan (NSTC 112-2314-B-303-021).

Funding

This research was funded by the Buddhist Tzu Chi Medical Foundation (Grant number: TCMF-A 107–01-02(112) and TCMF-A 107–01-02(113)) and the National Science and Technology Council in Taiwan (NSTC 112–2314-B-303–021). The funding was involved in the data collection and analysis in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hung Chen.

Ethics declarations

Conflicts of interest

All authors declare that they have no potential conflicts of interest.

Ethical approval

This study has been approved by the Institutional Review Board and Ethics Committee of Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (protocol code IRB112-253-B and date of approval: Nov. 11, 2023). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The requirement of informed consent for this study was waived due to its retrospective nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lue, KH., Chen, YH., Chu, SC. et al. Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study. Ann Nucl Med (2024). https://doi.org/10.1007/s12149-024-01936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12149-024-01936-2

Keywords

Navigation