Skip to main content
Log in

Advances in the molecular imaging of primary aldosteronism

  • Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Primary aldosteronism (PA) is the most common cause of secondary hypertension. It predisposes to adverse outcomes such as nephrotoxicity and cardiovascular damage, which are mediated by direct harm from hypertension to the target organs. Accurate subtype diagnosis and localization are crucial elements in choosing the type of treatment for PA in clinical practice since the dominant side of aldosterone secretion in PA affects subsequent treatment options. The gold standard for diagnosing PA subtypes, adrenal venous sampling (AVS), requires specialized expertise, the invasive nature of the procedure and high costs, all of which delay the effective treatment of PA. Nuclide molecular imaging is non-invasive and has wider applications in the diagnosis and treatment of PA. This review aims to provide a summary of the application of radionuclide imaging in the diagnosis, treatment management and prognostic assessment of PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Turcu AF, Yang J, Vaidya A. Primary aldosteronism—a multidimensional syndrome. Nat Rev Endocrinol. 2022;18:665–82.

    Article  PubMed  Google Scholar 

  2. Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69:1811–20.

    Article  PubMed  Google Scholar 

  3. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  4. Rossi GP, Rossitto G, Amar L, Azizi M, Riester A, Reincke M, et al. Clinical outcomes of 1625 patients with primary aldosteronism subtyped with adrenal vein sampling. Hypertens Dallas Tex. 1979;2019(74):800–8.

    Google Scholar 

  5. Rossi GP, Auchus RJ, Brown M, Lenders JWM, Naruse M, Plouin PF, et al. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertens Dallas Tex. 1979;2014(63):151–60.

    Google Scholar 

  6. Rossi GP, Maiolino G, Seccia TM. Adrenal venous sampling: where do we stand? Endocrinol Metab Clin North Am. 2019;48:843–58.

    Article  PubMed  Google Scholar 

  7. Ladurner R, Sommerey S, Buechner S, Dietz A, Degenhart C, Hallfeldt K, et al. Accuracy of adrenal imaging and adrenal venous sampling in diagnosing unilateral primary aldosteronism. Eur J Clin Invest. 2017;47:372–7.

    Article  PubMed  Google Scholar 

  8. Aono D, Kometani M, Karashima S, Usukura M, Gondo Y, Hashimoto A, et al. Primary aldosteronism subtype discordance between computed tomography and adrenal venous sampling. Hypertens Res. 2019;42:1942–50.

    Article  CAS  PubMed  Google Scholar 

  9. Young WF, Stanson AW, Thompson GB, Grant CS, Farley DR, van Heerden JA. Role for adrenal venous sampling in primary aldosteronism. Surgery. 2004;136:1227–35.

    Article  PubMed  Google Scholar 

  10. Rubello D, Bui C, Casara D, Gross MD, Fig LM, Shapiro B. Functional scintigraphy of the adrenal gland. Eur J Endocrinol. 2002;147:13–28.

    Article  CAS  PubMed  Google Scholar 

  11. Sarkar SD, Beierwaltes H, Ice RD, Basmadjian GP, Hetzel KR, Kennedy WP, et al. A new and superior adrenal scanning agent, NP-59. J Nucl Med Off Publ Soc Nucl Med. 1975;16:1038–42.

    CAS  Google Scholar 

  12. Wu M-H, Liu F-H, Lin K-J, Sun J-H, Chen S-T. Diagnostic value of adrenal iodine-131 6-β-iodomethyl-19-norcholesterol scintigraphy for primary aldosteronism: a retrospective study at a medical center in North Taiwan. Nucl Med Commun. 2019;40:568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. the TAIPAI Study Group, Lu C-C, Wu V-C, Wu K-D, Liu K-L, Lin W-C, et al. Prognostic value of semiquantification NP-59 SPECT/CT in primary aldosteronism patients after adrenalectomy. Eur J Nucl Med Mol Imaging. 2014;41:1375–84.

    Article  Google Scholar 

  14. Yen R-F, Wu V-C, Liu K-L, Cheng M-F, Wu Y-W, Chueh S-C, et al. 131I–6beta-iodomethyl-19-norcholesterol SPECT/CT for primary aldosteronism patients with inconclusive adrenal venous sampling and CT results. J Nucl Med Off Publ Soc Nucl Med. 2009;50:1631–7.

    CAS  Google Scholar 

  15. Lenzini L, Rossitto G, Maiolino G, Letizia C, Funder JW, Rossi GP. A meta-analysis of somatic KCNJ5 K(+) channel mutations in 1636 patients with an aldosterone-producing adenoma. J Clin Endocrinol Metab. 2015;100:E1089–95.

    Article  PubMed  Google Scholar 

  16. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arnesen T, Glomnes N, Strømsøy S, Knappskog S, Heie A, Akslen LA, et al. Outcome after surgery for primary hyperaldosteronism may depend on KCNJ5 tumor mutation status: a population-based study from Western Norway. Langenbecks Arch Surg. 2013;398:869–74.

    Article  PubMed  Google Scholar 

  18. Scholl UI, Lifton RP. New insights into aldosterone-producing adenomas and hereditary aldosteronism: mutations in the K+ channel KCNJ5. Curr Opin Nephrol Hypertens. 2013;22:141–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ip JCY, Pang TCY, Pon CK, Zhao JT, Sywak MS, Gill AJ, et al. Mutations in KCNJ5 determines presentation and likelihood of cure in primary hyperaldosteronism. ANZ J Surg. 2015;85:279–83.

    Article  PubMed  Google Scholar 

  20. Vilela LAP, Rassi-Cruz M, Guimaraes AG, Moises CCS, Freitas TC, Alencar NP, et al. KCNJ5 somatic mutation is a predictor of hypertension remission after adrenalectomy for unilateral primary aldosteronism. J Clin Endocrinol Metab. 2019;104:4695–702.

    Article  PubMed  Google Scholar 

  21. Lu C-C, Yen R-F, Peng K-Y, Huang J-Y, Wu K-D, Chueh JS, et al. NP-59 adrenal scintigraphy as an imaging biomarker to predict KCNJ5 mutation in primary aldosteronism patients. Front Endocrinol. 2021;12: 644927.

    Article  Google Scholar 

  22. Counsell RE, Ranade VV, Blair RJ, Beierwaltes WH, Weinhold PA. Tumor localizing agents. IX. Radioiodinated cholesterol. Steroids. 1970;16:317–28.

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi T, Maeda M, Haradahira T, Kojima M. Fluoro norcholesterol analogues. Synthesis of 6 β-(2’-fluoro) ethyl-19-norcholest-5(10)-en-3 β-ol. Steroids. 1982;39:585–93.

    Article  CAS  PubMed  Google Scholar 

  24. Winton WP, Brooks AF, Wong KK, Scott PJH, Viglianti BL. Synthesis of 6-(Fluoromethyl)-19-norcholest-5(10)-en-3-ol, a fluorinated analogue of NP-59, using the mild fluorinating reagent, TBAF(Pinacol)2. SynOpen. 2019;03:55–8.

    Article  CAS  Google Scholar 

  25. Brooks AF, Winton WP, Stauff J, Arteaga J, Henderson B, Niedbala J, et al. Development of fluorinated NP-59: a revival of cholesterol use imaging with PET. J Nucl Med Off Publ Soc Nucl Med. 2022;63:1949–55.

    CAS  Google Scholar 

  26. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med Off Publ Soc Nucl Med. 2005;46:1023–7.

    Google Scholar 

  27. Nakamura Y, Maekawa T, Felizola SJA, Satoh F, Qi X, Velarde-Miranda C, et al. Adrenal CYP11B1/2 expression in primary aldosteronism: immunohistochemical analysis using novel monoclonal antibodies. Mol Cell Endocrinol. 2014;392:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bergström M, Bonasera TA, Lu L, Bergström E, Backlin C, Juhlin C, et al. In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med Off Publ Soc Nucl Med. 1998;39:982–9.

    Google Scholar 

  29. Mitterhauser M, Wadsak W, Wabnegger L, Sieghart W, Viernstein H, Kletter K, et al. In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur J Nucl Med Mol Imaging. 2003;30:1398–401.

    Article  CAS  PubMed  Google Scholar 

  30. Hahner S, Stuermer A, Kreissl M, Reiners C, Fassnacht M, Haenscheid H, et al. [123I]Iodometomidate for molecular imaging of adrenocortical cytochrome P450 family 11B enzymes. J Clin Endocrinol Metab. 2008;93:2358–65.

    Article  CAS  PubMed  Google Scholar 

  31. Bergström M, Juhlin C, Bonasera TA, Sundin A, Rastad J, Akerström G, et al. PET imaging of adrenal cortical tumors with the 11β-hydroxylase tracer 11C-metomidate. J Nucl Med Off Publ Soc Nucl Med. 2000;41:275–82.

    Google Scholar 

  32. Zettinig G, Mitterhauser M, Wadsak W, Becherer A, Pirich C, Vierhapper H, et al. Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11β-hydroxylase tracer (11)C-metomidate. Eur J Nucl Med Mol Imaging. 2004;31:1224–30.

    Article  PubMed  Google Scholar 

  33. Minn H, Salonen A, Friberg J, Roivainen A, Viljanen T, Långsjö J, et al. Imaging of adrenal incidentalomas with PET using (11)C-metomidate and (18)F-FDG. J Nucl Med Off Publ Soc Nucl Med. 2004;45:972–9.

    CAS  Google Scholar 

  34. Hennings J, Lindhe O, Bergström M, Långström B, Sundin A, Hellman P. [11C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings. J Clin Endocrinol Metab. 2006;91:1410–4.

    Article  CAS  PubMed  Google Scholar 

  35. Soinio M, Luukkonen A-K, Seppänen M, Kemppainen J, Seppänen J, Pienimäki J-P, et al. Functional imaging with 11C-metomidate PET for subtype diagnosis in primary aldosteronism. Eur J Endocrinol. 2020;183:539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crimì F, Spimpolo A, Cecchin D, Rossi GP. Functional imaging by 11C-metomidate PET: a really useless technique for primary aldosteronism subtyping? Eur J Endocrinol. 2021;184:L9-10.

    Article  PubMed  Google Scholar 

  37. Newton MA, Laragh JH. Effects of glucocorticoid administration on aldosterone excretion and plasma renin in normal subjects, in essential hypertension and in primary aldosteronism. J Clin Endocrinol Metab. 1968;28:1014–22.

    Article  CAS  PubMed  Google Scholar 

  38. Hennings J, Sundin A, Hägg A, Hellman P. 11C-metomidate positron emission tomography after dexamethasone suppression for detection of small adrenocortical adenomas in primary aldosteronism. Langenbecks Arch Surg. 2010;395:963–7.

    Article  CAS  PubMed  Google Scholar 

  39. Burton TJ, Mackenzie IS, Balan K, Koo B, Bird N, Soloviev DV, et al. Evaluation of the sensitivity and specificity of 11 C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s Adenomas. J Clin Endocrinol Metab. 2012;97:100–9.

    Article  CAS  PubMed  Google Scholar 

  40. Puar TH, Khoo CM, Tan CJ, Tong AKT, Tan MCS, Teo AED, et al. 11C-Metomidate PET-CT versus adrenal vein sampling to subtype primary aldosteronism: a prospective clinical trial. J Hypertens. 2022;40:1179–88.

    Article  CAS  PubMed  Google Scholar 

  41. Lu C-C, Chen C-J, Peng K-Y, Chueh JS, Chang C-C, Yen R-F, et al. Predicting treatment response in primary aldosteronism using 11C-metomidate positron emission tomography. Clin Nucl Med. 2022;47:936–42.

    Article  PubMed  Google Scholar 

  42. Wu X, Senanayake R, Goodchild E, Bashari WA, Salsbury J, Cabrera CP, et al. [11C]metomidate PET-CT versus adrenal vein sampling for diagnosing surgically curable primary aldosteronism: a prospective, within-patient trial. Nat Med. 2023;29:190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inoue K, Yamazaki Y, Kitamoto T, Hirose R, Saito J, Omura M, et al. Aldosterone suppression by dexamethasone in patients with KCNJ5-mutated aldosterone-producing adenoma. J Clin Endocrinol Metab. 2018;103:3477–85.

    Article  PubMed  Google Scholar 

  44. Sonoyama T, Sone M, Tamura N, Honda K, Taura D, Kojima K, et al. Role of endogenous ACTH on circadian aldosterone rhythm in patients with primary aldosteronism. Endocr Connect. 2014;3:173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hahner S, Kreissl MC, Fassnacht M, Haenscheid H, Bock S, Verburg FA, et al. Functional characterization of adrenal lesions using [123I]IMTO-SPECT/CT. J Clin Endocrinol Metab. 2013;98:1508–18.

    Article  CAS  PubMed  Google Scholar 

  46. Heinze B, Schirbel A, Nannen L, Michelmann D, Hartrampf PE, Bluemel C, et al. Novel CYP11B-ligand [123/131I]IMAZA as promising theranostic tool for adrenocortical tumors: comprehensive preclinical characterization and first clinical experience. Eur J Nucl Med Mol Imaging. 2021;49:301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Werner RA, Derlin T, Lapa C, Sheikbahaei S, Higuchi T, Giesel FL, et al. 18F-labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging. Theranostics. 2020;10:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wadsak W, Mitterhauser M, Rendl G, Schuetz M, Mien LK, Ettlinger DE, et al. [18F]FETO for adrenocortical PET imaging: a pilot study in healthy volunteers. Eur J Nucl Med Mol Imaging. 2006;33:669–72.

    Article  PubMed  Google Scholar 

  49. Abe T, Naruse M, Young WF, Kobashi N, Doi Y, Izawa A, et al. A novel CYP11B2-specific imaging agent for detection of unilateral subtypes of primary aldosteronism. J Clin Endocrinol Metab. 2016;101:1008–15.

    Article  CAS  PubMed  Google Scholar 

  50. Bongarzone S, Basagni F, Sementa T, Singh N, Gakpetor C, Faugeras V, et al. Development of [18F]FAMTO: a novel fluorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands. Nucl Med Biol. 2019;68–69:14–21.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sander K, Gendron T, Cybulska KA, Sirindil F, Zhou J, Kalber TL, et al. Development of [18F]aldoview as the first highly selective aldosterone synthase PET tracer for imaging of primary hyperaldosteronism. J Med Chem. 2021;64:9321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Silins I, Sundin A, Nordeman P, Jahan M, Estrada S, Monazzam A, et al. Para-chloro-2-[18F]fluoroethyl-etomidate: a promising new PET radiotracer for adrenocortical imaging. Int J Med Sci. 2021;18:2187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Silins I, Sundin A, Lubberink M, O’Sullivan L, Gurnell M, Aigbirhio F, et al. First-in-human evaluation of [18F]CETO: a novel tracer for adrenocortical tumours. Eur J Nucl Med Mol Imaging. 2023;50:398–409.

    Article  CAS  PubMed  Google Scholar 

  54. Kawaguchi N, Zhang T-T, Nakanishi T. Involvement of CXCR4 in normal and abnormal development. Cells. 2019;8:185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weiss ID, Jacobson O. Molecular imaging of chemokine receptor CXCR4. Theranostics. 2013;3:76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Demmer O, Gourni E, Schumacher U, Kessler H, Wester H-J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem. 2011;6:1789–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buck AK, Stolzenburg A, Hänscheid H, Schirbel A, Lückerath K, Schottelius M, et al. Chemokine receptor—directed imaging and therapy. Methods. 2017;130:63–71.

    Article  CAS  PubMed  Google Scholar 

  59. Itcho K, Oki K, Kobuke K, Yoshii Y, Ohno H, Yoneda M, et al. Aberrant G protein-receptor expression is associated with DNA methylation in aldosterone-producing adenoma. Mol Cell Endocrinol. 2018;461:100–4.

    Article  CAS  PubMed  Google Scholar 

  60. Demmer O, Dijkgraaf I, Schumacher U, Marinelli L, Cosconati S, Gourni E, et al. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J Med Chem. 2011;54:7648–62.

    Article  CAS  PubMed  Google Scholar 

  61. Herrmann K, Lapa C, Wester H-J, Schottelius M, Schiepers C, Eberlein U, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-Pentixafor. J Nucl Med. 2015;56:410–6.

    Article  CAS  PubMed  Google Scholar 

  62. Heinze B, Fuss CT, Mulatero P, Beuschlein F, Reincke M, Mustafa M, et al. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for molecular imaging of aldosterone-producing adenoma. Hypertension. 2018;71:317–25.

    Article  CAS  PubMed  Google Scholar 

  63. Ding J, Tong A, Zhang Y, Wen J, Huo L. Intense 68Ga-Pentixafor activity in aldosterone-producing adrenal adenomas. Clin Nucl Med. 2020;45:336–9.

    Article  PubMed  Google Scholar 

  64. Ding J, Zhang Y, Wen J, Zhang H, Wang H, Luo Y, et al. Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. Eur J Nucl Med Mol Imaging. 2020;47:2656–65.

    Article  CAS  PubMed  Google Scholar 

  65. Ding J, Tong A, Zhang Y, Wen J, Zhang H, Hacker M, et al. Functional characterization of adrenocortical masses in nononcologic patients using 68Ga-pentixafor. J Nucl Med. 2022;63:368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao Y, Ding J, Cui Y, Li T, Sun H, Zhao D, et al. Functional nodules in primary aldosteronism: identification of CXCR4 expression with 68Ga-pentixafor PET/CT. Eur Radiol. 2022;33:996–1003.

    Article  CAS  PubMed  Google Scholar 

  67. Hu J, Xu T, Shen H, Song Y, Yang J, Zhang A, et al. Accuracy of Gallium-68 pentixafor positron emission tomography-computed tomography for subtyping diagnosis of primary aldosteronism. JAMA Netw Open. 2023;6: e2255609.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chaman Baz AH, van de Wiel E, Groenewoud H, Arntz M, Gotthardt M, Deinum J, et al. CXCR4-directed [68Ga]Ga-PentixaFor PET/CT versus adrenal vein sampling performance: a study protocol for a randomised two-step controlled diagnoStic Trial Ultimately comparing hypertenSion outcome in primary aldosteronism (CASTUS). BMJ Open. 2022;12: e060779.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Poschenrieder A, Osl T, Schottelius M, Hoffmann F, Wirtz M, Schwaiger M, et al. First 18F-labeled pentixafor-based imaging agent for PET imaging of CXCR4 expression in vivo. Tomogr Ann Arbor Mich. 2016;2:85–93.

    Google Scholar 

  70. Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester H-J. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Theranostics. 2020;10:8264–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Cheng or Zhengjie Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Cheng, G. & Wang, Z. Advances in the molecular imaging of primary aldosteronism. Ann Nucl Med 37, 433–441 (2023). https://doi.org/10.1007/s12149-023-01851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-023-01851-y

Keywords

Navigation