Skip to main content
Log in

Positron emission tomography imaging of adrenal masses: 18F-fluorodeoxyglucose and the 11β-hydroxylase tracer 11C-metomidate

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

11C-metomidate (MTO), a marker of 11β-hydroxylase, has been suggested as a novel positron emission tomography (PET) tracer for adrenocortical imaging. Up to now, experience with this very new tracer is limited. The aims of this study were (1) to evaluate this novel tracer, (2) to point out possible advantages in comparison with 18F-fluorodeoxyglucose (FDG) and (3) to investigate in vivo the expression of 11β-hydroxylase in patients with primary aldosteronism.

Methods

Sixteen patients with adrenal masses were investigated using both MTO and FDG PET imaging. All patients except one were operated on. Five patients had non-functioning adrenal masses, while 11 had functioning tumours(Cushing’s syndrome, n=4; Conn’s syndrome, n=5; phaeochromocytoma, n=2). Thirteen patients had benign disease, whereas in three cases the adrenal mass was malignant (adrenocortical cancer, n=1; malignant phaeochromocytoma, n=1; adrenal metastasis of renal cancer, n=1).

Results

MTO imaging clearly distinguished cortical from non-cortical adrenal masses (median standardised uptake values of 18.6 and 1.9, respectively, p<0.01). MTO uptake was slightly lower in patients with Cushing’s syndrome than in those with Conn’s syndrome, but the difference did not reach statistical significance. The expression of 11β-hydroxylase was not suppressed in the contralateral gland of patients with Conn’s syndrome, whereas in Cushing’s syndrome this was clearly the case. The single patient with adrenocortical carcinoma had MTO uptake in the lower range.

Conclusion

MTO could not definitely distinguish between benign and malignant disease. FDG PET, however, identified clearly all three study patients with malignant adrenal lesions. We conclude: (1) MTO is an excellent imaging tool to distinguish adrenocortical and non-cortical lesions; (2) the in vivo expression of 11β-hydroxylase is lower in Cushing’s syndrome than in Conn’s syndrome, and there is no suppression of the contralateral gland in primary aldosteronism; (3) for the purpose of discriminating between benign and malignant lesions, FDG is the tracer of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3a, b

Similar content being viewed by others

References

  1. Kloos RT, Gross MD, Francis IR, Korobkin M, Shapiro B. Incidentally discovered adrenal masses. Endocr Rev 1995;16:460–484

    CAS  PubMed  Google Scholar 

  2. Russell RP, Masi AT, Richter ED. Adrenal cortical adenomas and hypertension. A clinical pathologic analysis of 690 cases with matched controls and a review of the literature. Medicine (Baltimore) 1972;51:211–225

    Google Scholar 

  3. Brunt LM, Moley JF. Adrenal incidentaloma. World J Surg 2001;25:905–913

    Article  CAS  PubMed  Google Scholar 

  4. Mantero F, Masini AM, Opocher G, Giovagnetti M, Arnaldi G. Adrenal incidentaloma: an overview of hormonal data from the National Italian Study Group. Horm Res 1997;47:284–289

    CAS  PubMed  Google Scholar 

  5. Kawamoto T, Mitsuuchi Y, Toda K, et al. Role of steroid 11β-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci U S A 1992;89:1458–1462

    CAS  PubMed  Google Scholar 

  6. White PC, Curnow KM, Pascoe L. Disorders of steroid 11β-hydroxylase isozymes. Endocr Rev 1994;15:421–438

    Article  CAS  PubMed  Google Scholar 

  7. Bergström M, Bonasera TA, Lu L, Bergström E, Backlin C, Juhlin C, Långström B. In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med 1998;39:982–989

    CAS  PubMed  Google Scholar 

  8. Zettinig G, Mitterhauser M, Wadsak W, Dobrozemsky G, Pirich C, Dudczak R, Niederle B, Kletter K. Imaging of adrenal masses with C11-metomidate PET: preliminary results from Vienna. Eur J Nucl Med Mol Imaging 2002;29(Suppl 1):S280

    Google Scholar 

  9. Mitterhauser M, Wadsak W, Langer O, Schmaljohann J, Zettinig G, Dudczak R, Viernstein H, Kletter K. Comparison of three different purification methods for the routine preparation of [11C] metomidate. Appl Radiat Isot 2003;59:125–128

    Article  CAS  PubMed  Google Scholar 

  10. Bergström M, Juhlin C, Bonasera TA, Sundin A, Rastad J, Akerström G, Långström B. PET imaging of adrenal cortical tumors with the 11β-hydroxylase tracer 11C-metomidate. J Nucl Med 2000;41:275–282

    CAS  PubMed  Google Scholar 

  11. Khan TS, Sundin A, Juhlin C, Langstrom B, Bergström M, Eriksson B. 11C-metomidate PET imaging of adrenocortical cancer. Eur J Nucl Med Mol Imaging 2003;30:403–410

    PubMed  Google Scholar 

  12. Mitterhauser M, Dobrozemsky G, Wadsak W, Zettinig G, Viernstein H, Zolle I, Kletter K. 11C MTO may be superior to 18F FDG for PET imaging of metastases from adrenocortical origin. Eur J Nucl Med Mol Imaging 2002;29(Suppl 1):S372

  13. Becherer A, Vierhapper H, Potzi C, Karanikas G, Kurtaran A, Schmaljohann J, Staudenherz A, Dudczak R, Kletter K. FDG-PET in adrenocortical carcinoma. Cancer Biother Radiopharm 2001;16:289–295

    CAS  PubMed  Google Scholar 

  14. Mitterhauser M, Wadsak W, Wabnegger L, Sieghart W, Viernstein H, Kletter K, Dudczak R. In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur J Nucl Med Mol Imaging 2003;30:1398-1401

    Article  CAS  PubMed  Google Scholar 

  15. Gross MD, Shapiro B, Francis IR, Glazer GM, Bree RL, Arcomano MA, Schteingart DE, McLeod MK, Sanfield JA, Thompson NW. Scintigraphic evaluation of clinically silent adrenal masses. J Nucl Med 1994;35:1145–1152

    CAS  PubMed  Google Scholar 

  16. Dwamena BA, Kloos RT, Fendrick AM, Gross MD, Francis IR, Korobkin MT, Shapiro B. Diagnostic evaluation of the adrenal incidentaloma: decision and cost-effectiveness analyses. J Nucl Med 1998;39:707–712

    CAS  PubMed  Google Scholar 

  17. Zettinig G, Kurtaran A, Prager G, Kaserer K, Dudczak R, Niederle B. ‘Suppressed’ double adenoma—a rare pitfall in minimally invasive parathyroidectomy. Horm Res 2002;57:57–60

    Article  Google Scholar 

  18. Yun M, Kim W, Alnafisi N, Lacorte L, Jang S, Alavi A. 18F-FDG PET in characterizing adrenal lesions detected on CT or MRI. J Nucl Med 2001;42:1795–1799

    CAS  PubMed  Google Scholar 

  19. Boland GW, Goldberg MA, Lee MJ, Mayo-Smith WW, Dixon J, McNicholas MM, Mueller PR. Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[F-18]-fluoro-2-deoxy-d-glucose. Radiology 1995;194:131–134

    CAS  PubMed  Google Scholar 

  20. Erasmus JJ, Patz Jr EF, McAdams HP, Murray JG, Herndon J, Coleman RE, Goodman PC. Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. Am J Roentgenol 1997;168:1357–1360

    CAS  PubMed  Google Scholar 

  21. Maurea S, Mainolfi C, Bazzicalupo L, Panico MR, Imparato C, Alfano B, Ziviello M, Salvatore M. Imaging of adrenal tumors using FDG PET: comparison of benign and malignant lesions. Am J Roentgenol 1999;173:25–29

    CAS  Google Scholar 

  22. Curnow KM, Tusie-Luna MT, Pascoe L, Natarajan R, Gu JL, Nadler JL, White PC. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol 1991;5:1513–1522

    CAS  PubMed  Google Scholar 

  23. Wu KD, Chen YM, Chu JS, Hung KY, Hsieh TS, Hsieh BS. Zona fasciculata-like cells determine the response of plasma aldosterone to metoclopramide and aldosterone synthase messenger ribonucleic acid level in aldosterone-producing adenoma. J Clin Endocrinol Metab 1995;80:783–789

    Article  CAS  PubMed  Google Scholar 

  24. Fallo F, Pezzi V, Barzon L, Mulatero P, Veglio F, Sonino N, Mathis JM. Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas. Eur J Endocrinol 2002;147:795–802

    CAS  PubMed  Google Scholar 

  25. Pascoe L, Jeunemaitre X, Lebrethon MC, Curnow KM, Gomez-Sanchez CE, Gasc JM, Saez JM, Corvol P. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumors occurring in a single French pedigree. J Clin Invest 1995;96:2236–2246

    CAS  PubMed  Google Scholar 

  26. Enberg U, Farnebo LO, Wedell A, Grondal S, Thoren M, Grimelius L, Kjellman M, Backdahl M, Hamberger B. In vitro release of aldosterone and cortisol in human adrenal adenomas correlates to mRNA expression of steroidogenic enzymes for genes CYP11B2 and CYP17. World J Surg 2001;25:957–966

    Article  CAS  PubMed  Google Scholar 

  27. Erdmann B, Gerst H, Bulow H, Lenz D, Bahr V, Bernhardt R. Zone-specific localization of cytochrome P45011B1 in human adrenal tissue by PCR-derived riboprobes. Histochem Cell Biol 1995;104:301–307

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Zettinig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zettinig, G., Mitterhauser, M., Wadsak, W. et al. Positron emission tomography imaging of adrenal masses: 18F-fluorodeoxyglucose and the 11β-hydroxylase tracer 11C-metomidate. Eur J Nucl Med Mol Imaging 31, 1224–1230 (2004). https://doi.org/10.1007/s00259-004-1575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1575-0

Keywords

Navigation