Skip to main content
Log in

Energy metabolism: a new target for gastric cancer treatment

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gastric cancer is the fifth most common malignancy worldwide having the fourth highest mortality rate. Energy metabolism is key and closely linked to tumour development. Most important in the reprogramming of cancer metabolism is the Warburg effect, which suggests that tumour cells will utilise glycolysis even with normal oxygen levels. Various molecules exert their effects by acting on enzymes in the glycolytic pathway, integral to glycolysis. Second, mitochondrial abnormalities in the reprogramming of energy metabolism, with consequences for glutamine metabolism, the tricarboxylic acid cycle and oxidative phosphorylation, abnormal fatty acid oxidation and plasma lipoprotein metabolism are important components of tumour metabolism. Third, inflammation-induced oxidative stress is a danger signal for cancer. Fourth, patterns of signalling pathways involve all aspects of metabolic transduction, and many clinical drugs exert their anticancer effects through energy metabolic signalling. This review summarises research on energy metabolism genes, enzymes and proteins and transduction pathways associated with gastric cancer, and discusses the mechanisms affecting their effects on postoperative treatment resistance and prognoses of gastric cancer. We believe that an in-depth understanding of energy metabolism reprogramming will aid the diagnosis and subsequent treatment of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

GPI:

Glucose-6-phosphate isomerase

TIGAR:

TP53-induced glycolysis and apoptosis regulator

ROS:

Reactive oxygen species

ENO1:

Alpha-enolase

PKM2:

Pyruvate kinase M2

PI3K/AKT:

Phosphatidylinositol 3-kinase/AKT

PolG:

Polymerase gamma

PDHA1:

Pyruvate dehydrogenase A1

PDK:

Pyruvate dehydrogenase kinase

LDHA:

Lactate dehydrogenase A

HIF1-α:

Hypoxia-inducible factor 1-α

CDK2:

Cell cycle-dependent kinase

SETD1A:

SET domain containing 1A

DLC3:

Deleted in liver cancer 3

HMGB2:

High-mobility group box 2

GRINA:

Glutamate receptor ionotropic N-methyl-d-aspartate-associated protein 1

ANXA2:

Membrane-linked protein A2

PCs:

Parietal cells

AMPK:

AMP kinase

SLC2A1:

Solute carrier family 2 member 1

PRKAA1:

Protein kinase AMP-activated α1 catalytic subunit

CircRNAs:

Circular RNAs

Myh9:

Myosin heavy chain 9

REDD1:

Increases DNA damage response 1

TAMs:

Tumour-associated macrophages

TAM:

Tissue-associated macrophage

PINK1:

PTEN-induced kinase 1

IM:

Inner mitochondrial membrane

MRC:

Mitochondrial respiratory chain

CoQ:

Coenzyme Q

MALM:

Mieap-induced accumulation of lysosomes within mitochondria

mtROS:

Mitochondrial reactive oxygen species

mtDNA:

Mitochondrial DNA

JNK:

Jun N-terminal kinase

TRPM2:

Transient receptor potential melastatin-2

PA-2:

Parameritannin A-2

DOX:

Doxorubicin

PAB:

Pseudolaric acid B

ER:

Endoplasmic reticulum

BP:

N-butylidenephthalide

PA:

Poric acid

JAK2:

Janus kinase 2

STAT3:

Signal transducer and activator of transcription 3

NSAID:

Nonsteroidal anti-inflammatory drug

PKC:

Protein kinase C

P38:

P38 MAPK

Drp1:

Dynamin-Related Protein 1

5-FU:

5-Fluorouracil

Mito-FF:

Mitochondria-penetrating tripeptide

PDT:

Photo-dynamic effect

TPT:

Topoisomerase I inhibitor Topotecan

GS:

Glutamine synthetase

ASC:

Alanine-serine-cysteine

ADCC:

Antibody dependent cellular cytotoxicity

GSH:

Glutathione

GA:

Gastric adenocarcinoma

IDH:

Isocitrate dehydrogenase

GC:

Gastric cancer

OXPHOS:

Oxidative phosphorylation

IL-10:

Interleukin 10

SALL4:

Spalt-like transcription factor 4

CAB39L:

Calcium binding protein 39-like

S100A10:

S100 calcium-binding protein A10

CSCs:

Cancer stem-like cells

Prdx3:

Peroxiredoxin 3

ALDH3A1:

Aldehyde dehydrogenase 3A1

FAO:

Fatty acid oxidation

MSCs:

Mesenchymal stem cells

HCP5:

Histocompatibility leukocyte antigen complex P5

Fen:

Fenofibrate

OS:

Oxidative stress

NOXs:

NADPH oxidases

Nrf2:

Nuclear factor erythroid-related factor 2

VLDL:

Very low density lipoprotein

HDLC:

High-density lipoprotein cholesterol

TG:

Triglycerides

TLR2:

Toll-like receptor 2

SGLT1:

Sodium/glucose cotransporter 1

References

  1. IARC. Infection with Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum. 1994;61:177–240.

    Google Scholar 

  2. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. The Lancet. 2016;388:2654–64.

    Article  Google Scholar 

  3. Mukaisho K, Nakayama T, Hagiwara T, Hattori T, Sugihara H. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids. Front Microbiol. 2015;6:412.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ashktorab H, Frank S, Khaled AR, Durum SK, Kifle B, Smoot DT. Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori. Gut. 2004;53:805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howson CP, Hiyama T, Wynder EL. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev. 1986;8:1–27.

    Article  CAS  PubMed  Google Scholar 

  6. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  8. Romero-Garcia S, Lopez-Gonzalez JS, Báez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H. Tumor cell metabolism: an integral view. Cancer Biol Ther. 2011;12:939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abbassi-Ghadi N, Kumar S, Huang J, Goldin R, Takats Z, Hanna GB. Metabolomic profiling of oesophago-gastric cancer: a systematic review. Eur J Cancer. 2013;49:3625–37.

    Article  CAS  PubMed  Google Scholar 

  11. Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 2011;14:443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69:1193–205.

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.

    Article  CAS  PubMed  Google Scholar 

  14. Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 2014;33:1454–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mao A, Zhou X, Liu Y, Ding J, Miao A, Pan G. KLF8 is associated with poor prognosis and regulates glycolysis by targeting GLUT4 in gastric cancer. J Cell Mol Med. 2019;23:5087–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo T, Bai YH, Cheng XJ, Han HB, Du H, Hu Y, et al. Insulin gene enhancer protein 1 mediates glycolysis and tumorigenesis of gastric cancer through regulating glucose transporter 4. Cancer Commun (Lond). 2021;41:258–72.

    Article  PubMed  Google Scholar 

  17. Shao M, Zhang J, Zhang J, Shi H, Zhang Y, Ji R, et al. SALL4 promotes gastric cancer progression via hexokinase II mediated glycolysis. Cancer Cell Int. 2020;20:188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Wu Y, Zhang Y, Yuan M, Li X, Gao J, et al. TIGAR promotes tumorigenesis and protects tumor cells from oxidative and metabolic stresses in gastric cancer. Front Oncol. 2019;9:1258.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep. 2017;7:2886.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lv M, Zhang S, Dong Y, Cao L, Guo S. PolG inhibits gastric cancer glycolysis and viability by suppressing PKM2 phosphorylation. Cancer Manag Res. 2021;13:1559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao X, Tian Z, Liu L. circATP2B1 promotes aerobic glycolysis in gastric cancer cells through regulation of the miR-326 gene cluster. Front Oncol. 2021;11:628624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Z, Yu M, Fei B, Fang X, Ma T, Wang D. miR215p targets PDHA1 to regulate glycolysis and cancer progression in gastric cancer. Oncol Rep. 2018;40:2955–63.

    CAS  PubMed  Google Scholar 

  23. Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 2015;22:577–89.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  Google Scholar 

  25. Qian Y, Wu X, Wang H, Hou G, Han X, Song W. PAK1 silencing is synthetic lethal with CDK4/6 inhibition in gastric cancer cells via regulating PDK1 expression. Hum Cell. 2020;33:377–85.

    Article  CAS  PubMed  Google Scholar 

  26. Hur H, Xuan Y, Kim YB, Lee G, Shim W, Yun J, et al. Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol. 2013;42:44–54.

    Article  CAS  PubMed  Google Scholar 

  27. He Z, Li Z, Zhang X, Yin K, Wang W, Xu Z, et al. MiR-422a regulates cellular metabolism and malignancy by targeting pyruvate dehydrogenase kinase 2 in gastric cancer. Cell Death Dis. 2018;9:505.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu B, Zhang Y, Suo J. Increased expression of PDK4 was displayed in gastric cancer and exhibited an association with glucose metabolism. Front Genet. 2021;12:689585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li X, Zhang C, Zhao T, Su Z, Li M, Hu J, et al. Lysine-222 succinylation reduces lysosomal degradation of lactate dehydrogenase a and is increased in gastric cancer. J Exp Clin Cancer Res. 2020;39:172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang XH, Jiang ZH, Yang HM, Zhang Y, Xu LH. Hypoxia-induced FOXO4/LDHA axis modulates gastric cancer cell glycolysis and progression. Clin Transl Med. 2021;11:e279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun L, Li J, Yan W, Yao Z, Wang R, Zhou X, et al. H19 promotes aerobic glycolysis, proliferation, and immune escape of gastric cancer cells through the microRNA-519d-3p/lactate dehydrogenase A axis. Cancer Sci. 2021;112:2245–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang Z, Li L, Tang Y, Xie D, Wu K, Wei W, et al. CDK2 positively regulates aerobic glycolysis by suppressing SIRT5 in gastric cancer. Cancer Sci. 2018;109:2590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu J, Chai H, Xu X, Yu J, Gu Y. Histone methyltransferase SETD1A interacts with HIF1alpha to enhance glycolysis and promote cancer progression in gastric cancer. Mol Oncol. 2020;14:1397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin L, Liu Y, Pan C, Zhang J, Zhao Y, Shao R, et al. Gastric cancer cells escape metabolic stress via the DLC3/MACC1 axis. Theranostics. 2019;9:2100–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Huang Y, Zhang J, Pei C, Hu J, Lyu J, et al. TIMMDC1 knockdown inhibits growth and metastasis of gastric cancer cells through metabolic inhibition and AKT/GSK3beta/beta-catenin signaling pathway. Int J Biol Sci. 2018;14:1256–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui G, Cai F, Ding Z, Gao L. HMGB2 promotes the malignancy of human gastric cancer and indicates poor survival outcome. Hum Pathol. 2019;84:133–41.

    Article  CAS  PubMed  Google Scholar 

  37. Deng T, Jiang X, He Z, Cai M, Chen C, Xu Z. Centromere protein U (CENPU) promotes gastric cancer cell proliferation and glycolysis by regulating high mobility group box 2 (HMGB2). Bioengineered. 2021;12:10194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu DH, Li Q, Hu H, Ni B, Liu X, Huang C, et al. Transmembrane protein GRINA modulates aerobic glycolysis and promotes tumor progression in gastric cancer. J Exp Clin Cancer Res. 2018;37:308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghashghaeinia M, Köberle M, Mrowietz U, Bernhardt I. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes. Cell Cycle. 2019;18:1316–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gatenby RA, Gawlinski ET. A reaction-diffusion model of cancer invasion. Cancer Res. 1996;56:5745–53.

    CAS  PubMed  Google Scholar 

  41. Rohani N, Hao L, Alexis MS, Joughin BA, Krismer K, Moufarrej MN, et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 2019;79:1952–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, et al. A Metformin-responsive metabolic pathway controls distinct steps in gastric progenitor fate decisions and maturation. Cell Stem Cell. 2020;26:910-925e916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhihua Y, Yulin T, Yibo W, Wei D, Yin C, Jiahao X, et al. Hypoxia decreases macrophage glycolysis and M1 percentage by targeting microRNA-30c and mTOR in human gastric cancer. Cancer Sci. 2019;110:2368–77.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang L, Li S. Lactic acid promotes macrophage polarization through MCT-HIF1alpha signaling in gastric cancer. Exp Cell Res. 2020;388:111846.

    Article  CAS  PubMed  Google Scholar 

  45. Shan T, Chen S, Chen X, Wu T, Yang Y, Li S, et al. M2-TAM subsets altered by lactic acid promote T-cell apoptosis through the PD-L1/PD-1 pathway. Oncol Rep. 2020;44:1885–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Paolini L, Adam C, Beauvillain C, Preisser L, Blanchard S, Pignon P, et al. Lactic acidosis together with GM-CSF and M-CSF induces human macrophages toward an inflammatory protumor phenotype, cancer. Immunol Res. 2020;8:383–95.

    CAS  Google Scholar 

  47. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-packaged HIF-1alpha-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21:498–510.

    Article  CAS  PubMed  Google Scholar 

  48. Yao X, He Z, Qin C, Deng X, Bai L, Li G, et al. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer Cell Int. 2020;20:503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu Y, Lu J, Tang Y, Xie W, Zhang H, Wang B, et al. PINK1 deficiency in gastric cancer compromises mitophagy, promotes the Warburg effect, and facilitates M2 polarization of macrophages. Cancer Lett. 2022;529:19–36.

    Article  CAS  PubMed  Google Scholar 

  50. Wang P, Guan Q, Zhou D, Yu Z, Song Y, Qiu W. miR-21 inhibitors modulate biological functions of gastric cancer cells via PTEN/PI3K/mTOR pathway. DNA Cell Biol. 2018;37:38–45.

    Article  PubMed  Google Scholar 

  51. Chen D, Wang H, Chen J, Li Z, Li S, Hu Z, et al. MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol. 2018;9:502.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen W, Ji Y. CircC6orf132 facilitates proliferation, migration, invasion, and glycolysis of gastric cancer cells under hypoxia by acting on the miR-873-5p/PRKAA1 axis. Front Genet. 2021;12:636392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fang X, Bai Y, Zhang L, Ding S. Silencing circSLAMF6 represses cell glycolysis, migration, and invasion by regulating the miR-204–5p/MYH9 axis in gastric cancer under hypoxia. Biosci Rep. 2020;40:BSR20201275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Jiang Y, Xu L, Qu C, Zhang L, Xiao X, et al. circ-NRIP1 promotes glycolysis and tumor progression by regulating miR-186-5p/MYH9 axis in gastric cancer. Cancer Manag Res. 2020;12:5945–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang J, Zhang X, Cao J, Xu P, Chen Z, Wang S, et al. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis. Cell Death Dis. 2021;12:910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Okuyama K, Kitajima Y, Egawa N, Kitagawa H, Ito K, Aishima S, et al. Mieap-induced accumulation of lysosomes within mitochondria (MALM) regulates gastric cancer cell invasion under hypoxia by suppressing reactive oxygen species accumulation. Sci Rep. 2019;9:2822.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang SF, Huang KH, Tseng WC, Lo JF, Li AF, Fang WL, et al. DNAJA3/Tid1 is required for mitochondrial DNA maintenance and regulates migration and invasion of human gastric cancer cells. Cancers (Basel). 2020;12:3463.

    Article  CAS  PubMed  Google Scholar 

  58. Mazumder S, De R, Debsharma S, Bindu S, Maity P, Sarkar S, et al. Indomethacin impairs mitochondrial dynamics by activating the PKCzeta-p38-DRP1 pathway and inducing apoptosis in gastric cancer and normal mucosal cells. J Biol Chem. 2019;294:8238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim DJ, Jeena MT, Kim OH, Hong HE, Seo H, Ryu JH, et al. Novel therapeutic application of self-assembly peptides targeting the mitochondria in in vitro and in vivo experimental models of gastric cancer. Int J Mol Sci. 2020;21:6126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang L, Amin A, Cheung WY, Xu R, Yu R, Tang J, et al. Parameritannin A-2 from Urceola huaitingii enhances doxorubicin-induced mitochondria-dependent apoptosis by inhibiting the PI3K/Akt, ERK1/2 and p38 pathways in gastric cancer cells. Chem Biol Interact. 2020;316:108924.

    Article  CAS  PubMed  Google Scholar 

  61. Wang D, Xin Y, Tian Y, Li W, Sun D, Yang Y. Pseudolaric acid B inhibits gastric cancer cell metastasis in vitro and in haematogenous dissemination model through PI3K/AKT, ERK1/2 and mitochondria-mediated apoptosis pathways. Exp Cell Res. 2017;352:34–44.

    Article  CAS  PubMed  Google Scholar 

  62. Wang L, Liu Y, Zhao TL, Li ZZ, He JY, Zhang BJ, et al. Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer. Phytomedicine. 2019;57:117–28.

    Article  PubMed  Google Scholar 

  63. Ye J, Huang Q, Xu J, Huang J, Wang J, Zhong W, et al. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth. J Cancer Res Clin Oncol. 2018;144:821–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Osanai-Sasakawa A, Hosomi K, Sumitomo Y, Takizawa T, Tomura-Suruki S, Imaizumi M, et al. An anti-ASCT2 monoclonal antibody suppresses gastric cancer growth by inducing oxidative stress and antibody dependent cellular toxicity in preclinical models. Am J Cancer Res. 2018;8:1499–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cai J, Chen Z, Wang J, Wang J, Chen X, Liang L, et al. circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating beta-catenin/c-Myc signaling. Cell Death Dis. 2019;10:576.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cao J, Zhang X, Xu P, Wang H, Wang S, Zhang L, et al. Circular RNA circLMO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/beta-catenin pathway. J Exp Clin Cancer Res. 2021;40:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu JM, Ho TW, Lai IR, Chen CN, Lin MT. Parenteral glutamine supplementation improves serum albumin values in surgical cancer patients. Clin Nutr. 2021;40:645–50.

    Article  CAS  PubMed  Google Scholar 

  68. Shen D, Zhang J, Yuan K, Zhao J, Zhao Z, Cui L, et al. Landscape of IDH1/2 mutations in Chinese patients with solid tumors: a pan-cancer analysis. Mol Genet Genomic Med. 2021;9:e1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao D, Wu Y, Jia Z, Zhao D, Zhang Y, Zhou T, et al. 18beta-glycyrrhetinic acid inhibited mitochondrial energy metabolism and gastric carcinogenesis through methylation-regulated TLR2 signaling pathway. Carcinogenesis. 2019;40:234–45.

    Article  CAS  PubMed  Google Scholar 

  70. Wang Z, Liu J, Yang Y, Xing C, Jing J, Yuan Y. Expression and prognostic potential of ribosome 18S RNA m(6)A methyltransferase METTL5 in gastric cancer. Cancer Cell Int. 2021;21:569.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Su F, Zhou FF, Zhang T, Wang DW, Zhao D, Hou XM, et al. Quantitative proteomics identified 3 oxidative phosphorylation genes with clinical prognostic significance in gastric cancer. J Cell Mol Med. 2020;24:10842–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aziz F, Chakraborty A, Liu K, Zhang T, Li X, Du R, Monts J, Xu G, Li Y, Bai R, Dong Z. Gastric tumorigenesis induced by combining Helicobacter pylori infection and chronic alcohol through IL-10 inhibition. Carcinogenesis. 2022;43(2):126–139.

    Article  CAS  PubMed  Google Scholar 

  73. Sun B, Xu L, Bi W, Ou WB. SALL4 oncogenic function in cancers: mechanisms and therapeutic relevance. Int J Mol Sci. 2022;23:2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Choi HJ, Jhe YL, Kim J, Lim JY, Lee JE, Shin MK, et al. FoxM1-dependent and fatty acid oxidation-mediated ROS modulation is a cell-intrinsic drug resistance mechanism in cancer stem-like cells. Redox Biol. 2020;36:101589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee JS, Kim SH, Lee S, Kang JH, Lee SH, Cheong JH, et al. Gastric cancer depends on aldehyde dehydrogenase 3A1 for fatty acid oxidation. Sci Rep. 2019;9:16313.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li W, Wong CC, Zhang X, Kang W, Nakatsu G, Zhao Q, et al. CAB39L elicited an anti-Warburg effect via a LKB1-AMPK-PGC1alpha axis to inhibit gastric tumorigenesis. Oncogene. 2018;37:6383–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li Y, Li XY, Li LX, Zhou RC, Sikong Y, Gu X, et al. S100A10 accelerates aerobic glycolysis and malignant growth by activating mTOR-signaling pathway in gastric cancer. Front Cell Dev Biol. 2020;8:559486.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang T, Zhou F, Yuan X, Yang T, Liang X, Wang Y, et al. Reactive oxygen species are involved in the development of gastric cancer and gastric cancer-related depression through ABL1-mediated inflammation signaling pathway. Oxid Med Cell Longev. 2019;2019:5813985.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sasaki Y, Takagane K, Konno T, Itoh G, Kuriyama S, Yanagihara K, et al. Expression of asporin reprograms cancer cells to acquire resistance to oxidative stress. Cancer Sci. 2021;112:1251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perez S, Talens-Visconti R, Rius-Perez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med. 2017;104:75–103.

    Article  CAS  PubMed  Google Scholar 

  81. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kyung S, Lim JW, Kim H. alpha-lipoic acid inhibits IL-8 expression by activating Nrf2 signaling in Helicobacter pylori-infected gastric epithelial cells. Nutrients. 2019;11:2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Paik JY, Lee HG, Piao JY, Kim SJ, Kim DH, Na HK, et al. Helicobacter pylori infection promotes autophagy through Nrf2-mediated heme oxygenase upregulation in human gastric cancer cells. Biochem Pharmacol. 2019;162:89–97.

    Article  CAS  PubMed  Google Scholar 

  84. Wang X, Ye T, Xue B, Yang M, Li R, Xu X, et al. Mitochondrial GRIM-19 deficiency facilitates gastric cancer metastasis through oncogenic ROS-NRF2-HO-1 axis via a NRF2-HO-1 loop. Gastric Cancer. 2021;24:117–32.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Chen J, Che Z, Shu C, Chen D, Ding K, et al. JP3 enhances the toxicity of cisplatin on drug-resistant gastric cancer cells while reducing the damage to normal cells. J Cancer. 2021;12:1894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiao Z, Zheng YB, Dao WX, Luo JF, Deng WH, Yan RC, et al. MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res. 2021;55:720–30.

    Article  CAS  PubMed  Google Scholar 

  87. Lv J, Xie M, Zhao S, Qiu W, Wang S, Cao M. Nestin is essential for cellular redox homeostasis and gastric cancer metastasis through the mediation of the Keap1-Nrf2 axis. Cancer Cell Int. 2021;21:603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hu Z, Wang X, Li D, Cao L, Cui H, Xu G. UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2. Oncogene. 2021;40:647–62.

    Article  CAS  PubMed  Google Scholar 

  89. Lu YX, Wu QN, Chen DL, Chen LZ, Wang ZX, Ren C, et al. Pharmacological ascorbate suppresses growth of gastric cancer cells with GLUT1 overexpression and enhances the efficacy of oxaliplatin through redox modulation. Theranostics. 2018;8:1312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Toh JWT, Wilson RB. Pathways of gastric carcinogenesis, Helicobacter pylori virulence and interactions with antioxidant systems, Vitamin C and phytochemicals. Int J Mol Sci. 2020;21:6451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sierra JC, Suarez G, Piazuelo MB, Luis PB, Baker DR, Romero-Gallo J, et al. alpha-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in Helicobacter pylori cagY. Proc Natl Acad Sci USA. 2019;116:5077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kishi S, Nishiguchi Y, Honoki K, Mori S, Fujiwara-Tani R, Sasaki T, et al. Role of glycated high mobility group Box-1 in gastric cancer. Int J Mol Sci. 2021;22:5185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang L, Chai X, Wan R, Zhang H, Zhou C, Xiang L, et al. Disulfiram chelated with copper inhibits the growth of gastric cancer cells by modulating stress response and Wnt/beta-catenin signaling. Front Oncol. 2020;10:595718.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang J, Sun Y, Zhang X, Cai H, Zhang C, Qu H, et al. Oxidative stress activates NORAD expression by H3K27ac and promotes oxaliplatin resistance in gastric cancer by enhancing autophagy flux via targeting the miR-433-3p. Cell Death Dis. 2021;12:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cai L, Sun Y, Wang K, Guan W, Yue J, Li J, et al. The better survival of MSI subtype is associated with the oxidative stress related pathways in gastric cancer. Front Oncol. 2020;10:1269.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yuan LQ, Wang C, Lu DF, Zhao XD, Tan LH, Chen X. Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging (Albany NY). 2020;12:3662–81.

    Article  CAS  PubMed  Google Scholar 

  97. Zahra D, Javaid A, Iqbal M, Akbar I, Ashfaq UA. Synthesis and therapeutic potential of nanoceria against cancer: an update. Crit Rev Ther Drug Carrier Syst. 2021;38:1–26.

    Article  PubMed  Google Scholar 

  98. Sun L, Lu T, Tian K, Zhou D, Yuan J, Wang X, et al. Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway. Eur J Pharmacol. 2019;845:8–15.

    Article  CAS  PubMed  Google Scholar 

  99. Shen KH, Hung JH, Chang CW, Weng YT, Wu MJ, Chen PS. Solasodine inhibits invasion of human lung cancer cell through downregulation of miR-21 and MMPs expression. Chem Biol Interact. 2017;268:129–35.

    Article  CAS  PubMed  Google Scholar 

  100. Pan C, Liu Q, Wu X. HIF1alpha/miR-520a-3p/AKT1/mTOR feedback promotes the proliferation and glycolysis of gastric cancer cells. Cancer Manag Res. 2019;11:10145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng J-Y, Yang J-B, Liu Y, Xu M, Huang Y-Y, Zhang J-J, et al. Profiling and targeting of cellular mitochondrial bioenergetics: inhibition of human gastric cancer cell growth by carnosine. Acta Pharmacol Sin. 2018;40:938–48.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Liao KF, Chiu TL, Huang SY, Hsieh TF, Chang SF, Ruan JW, et al. Anti-cancer effects of radix Angelica sinensis (Danggui) and N-butylidenephthalide on gastric cancer: implications for REDD1 activation and mTOR inhibition. Cell Physiol Biochem. 2018;48:2231–46.

    Article  CAS  PubMed  Google Scholar 

  103. Song J, Ma SJ, Luo JH, Zhang H, Wang RX, Liu H, et al. Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncol Rep. 2018;39:1975–83.

    CAS  PubMed  Google Scholar 

  104. Gao S, Chen M, Wei W, Zhang X, Zhang M, Yao Y, Lv Y, Ling T, Wang L, Zou X. Crosstalk of mTOR/PKM2 and STAT3/c-Myc signaling pathways regulate the energy metabolism and acidic microenvironment of gastric cancer. J Cell Biochem. 2019;120(2):1193–1202.

    Article  CAS  PubMed  Google Scholar 

  105. Komoll RM, Hu Q, Olarewaju O, von Döhlen L, Yuan Q, Xie Y, et al. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol. 2021;74:122–34.

    Article  CAS  PubMed  Google Scholar 

  106. Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, et al. Promoter of lncRNA Gene PVT1 Is a tumor-suppressor DNA boundary element. Cell. 2018;173:1398-1412e1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gu Y, Zhang J, Ma X, Kim BW, Wang H, Li J, et al. Stabilization of the c-Myc protein by CAMKIIγ promotes T cell lymphoma. Cancer Cell. 2017;32:115-128e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ronca R, Ghedini GC, Maccarinelli F, Sacco A, Locatelli SL, Foglio E, et al. FGF trapping inhibits multiple myeloma growth through c-Myc degradation-induced mitochondrial oxidative stress. Cancer Res. 2020;80:2340–54.

    Article  CAS  PubMed  Google Scholar 

  109. Sugase T, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Hiramatsu K, et al. Lipolysis-stimulated lipoprotein receptor overexpression is a novel predictor of poor clinical prognosis and a potential therapeutic target in gastric cancer. Oncotarget. 2018;9:32917–28.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Urano N, Fujiwara Y, Doki Y, Tsujie M, Yamamoto H, Miyata H, et al. Overexpression of hypoxia-inducible factor-1 alpha in gastric adenocarcinoma. Gastric Cancer. 2006;9:44–9.

    Article  CAS  PubMed  Google Scholar 

  111. Choi JH, Kim JS, Won YW, Uhm J, Park BB, Lee YY. The potential of deferasirox as a novel therapeutic modality in gastric cancer. World J Surg Oncol. 2016;14:77.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Qiu L, Lu F, Zhang L, Wang G, Geng R, Miao Y. HBXIP regulates gastric cancer glucose metabolism and malignancy through PI3K/AKT and p53 signaling. Onco Targets Ther. 2020;13:3359–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu YD, Yu L, Ying L, Balic J, Gao H, Deng NT, et al. Toll-like receptor 2 regulates metabolic reprogramming in gastric cancer via superoxide dismutase 2. Int J Cancer. 2019;144:3056–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shi M, Wang C, Ji J, Cai Q, Zhao Q, Xi W, et al. CRISPR/Cas9-mediated knockout of SGLT1 inhibits proliferation and alters metabolism of gastric cancer cells. Cell Signal. 2022;90:110192.

    Article  CAS  PubMed  Google Scholar 

  115. Shen Y, Dai X, Chen H, Zhai S, Peng Q, Cai S, et al. Comprehensive evaluation of microRNA-10b in digestive system cancers reveals prognostic implication and signaling pathways associated with tumor progression. J Cancer. 2021;12:4011–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nie X, Wang H, Wei X, Li L, Xue T, Fan L, et al. LRP5 promotes gastric cancer via activating canonical Wnt/β-catenin and glycolysis pathways. Am J Pathol. 2022;192:503–17.

    Article  CAS  PubMed  Google Scholar 

  117. Almasi S, Kennedy BE, El-Aghil M, Sterea AM, Gujar S, Partida-Sanchez S, et al. TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J Biol Chem. 2018;293:3637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yao S, Yan W. Overexpression of Mst1 reduces gastric cancer cell viability by repressing the AMPK-Sirt3 pathway and activating mitochondrial fission. Onco Targets Ther. 2018;11:8465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu H, Liu B, Chen Z, Li G, Zhang Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1alpha/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020;11:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen L, Peng J, Wang Y, Jiang H, Wang W, Dai J, et al. Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: the anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am J Transl Res. 2020;12:428–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang T, Shu X, Zhang HW, Sun LX, Yu L, Liu J, et al. Enolase 1 regulates stem cell-like properties in gastric cancer cells by stimulating glycolysis. Cell Death Dis. 2020;11:870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38:4637–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang S, Chen Z, Zhu S, Lu H, Peng D, Soutto M, et al. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer. Redox Biol. 2020;28:101319.

    Article  CAS  PubMed  Google Scholar 

  124. Kanda T, Sugihara T, Takata T, Mae Y, Kinoshita H, Sakaguchi T, et al. Low-density lipoprotein receptor expression is involved in the beneficial effect of photodynamic therapy using talaporfin sodium on gastric cancer cells. Oncol Lett. 2019;17:3261–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA A Cancer J Clin. 2021;71:264–79.

    Article  Google Scholar 

  126. Huang HC, Wen XZ, Xue H, Chen RS, Ji JF, Xu L. Phosphoglucose isomerase gene expression as a prognostic biomarker of gastric cancer, Chin. J Cancer Res. 2019;31:771–84.

    CAS  Google Scholar 

  127. Sun H, Huang X, Wang Z, Zhang G, Mei Y, Wang Y, et al. Triglyceride-to-high density lipoprotein cholesterol ratio predicts clinical outcomes in patients with gastric cancer. J Cancer. 2019;10:6829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National key research and development project (NO. 2021YFE0192100), Natural Science Foundation of Hunan Province (NO. 2020JJ4083, NO.2021JJ30694), Science and Technology Innovation Project of Hunan Province (NO. 2020SK51703), Innovation and Entrepreneurship Training Program for College Students in Hunan Province (NO.S202110555296), Key Projects of Hunan Provincial Education Department (NO.21A0285), Natural Science Foundation of Hunan Provincial and Municipal Co-funding (NO.2022JJ50029) , Key projects of Shaoyang Science and Technology Bureau (NO.2021GZ031)

Author information

Authors and Affiliations

Authors

Contributions

JL (first auther): Conceptualization; Data curation; Formal analysis; Writing—Original Draft; Writing—review &editing; Had the idea for the article; Performed the literature search and data analysis. XB: Investigation; Supervision; Critically revised the work. MZ: Investigation; Supervision. SW: Investigation; Supervision. JX: Project administration. XZ: Supervision. YL: Investigation. ZZ (Corresponding author): Funding acquisition; Project administration; Supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhiwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Informed consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Bai, X., Zhang, M. et al. Energy metabolism: a new target for gastric cancer treatment. Clin Transl Oncol 26, 338–351 (2024). https://doi.org/10.1007/s12094-023-03278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03278-3

Keywords

Navigation