Skip to main content

Advertisement

Log in

PAK1 silencing is synthetic lethal with CDK4/6 inhibition in gastric cancer cells via regulating PDK1 expression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is one of the most common malignancies worldwide. The prognosis of GC is unsatisfied owning to widespread metastasis. P21-activated kinase 1 (PAK1), a member of serine/threonine kinases, is associated with the progression of multiple types of human cancers. Here, we demonstrated that CDK4/6 inhibitor reduced GC cell viability and decreased PAK1 expression. Consistently, PAK1 ablation increased GC cell sensitivity exposed to CDK4/6 inhibitor and promoted DNA damage. We also revealed PAK1 depletion notably affected PDK1-AKT pathway, and PDK1 overexpression totally abrogated the effect of PAK1 deletion on DNA damage in GC cells. Additionally, PDK1 overexpression also rescued the increased GC cell sensitivity towards CDK4/6 inhibitor and the cell cycle arrest caused by PAK1 depletion. Our findings, therefore, suggested that PAK1 silencing increased sensitivity to CDK4/6 inhibition in gastric cancer cells via PDK1–AKT pathway. We, therefore, thought PAK1 as a promising therapeutic target for the treatment of CDK4/6 inhibitor-resistant gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. Glob Cancer Stat. 2005;55(2):74–108. https://doi.org/10.3322/canjclin.55.2.74.

    Article  Google Scholar 

  2. Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer. Best Pract Res Clin Gastroenterol. 2006;20(4):651–74. https://doi.org/10.1016/j.bpg.2006.03.016.

    Article  CAS  PubMed  Google Scholar 

  3. Yasui W, Oue N, Kuniyasu H, Ito R, Tahara E, Yokozaki H. Molecular diagnosis of gastric cancer: present and future. Gastric Cancer. 2001;4(3):113–21. https://doi.org/10.1007/s101200100001.

    Article  CAS  PubMed  Google Scholar 

  4. Malecka KA, Szentpetery Z, Peterson JR. Synergistic activation of p21-activated kinase 1 by phosphatidylinositol 4,5-bisphosphate and Rho GTPases. J Biol Chem. 2013;288(13):8887–97. https://doi.org/10.1074/jbc.M112.428904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Strochlic TI, Viaud J, Rennefahrt UE, Anastassiadis T, Peterson JR. Phosphoinositides are essential coactivators for p21-activated kinase 1. Mol Cell. 2010;40(3):493–500. https://doi.org/10.1016/j.molcel.2010.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pavey S, Zuidervaart W, van Nieuwpoort F, Packer L, Jager M, Gruis N, et al. Increased p21-activated kinase-1 expression is associated with invasive potential in uveal melanoma. Melanoma Res. 2006;16(4):285–96. https://doi.org/10.1097/01.cmr.0000222589.30117.f2.

    Article  CAS  PubMed  Google Scholar 

  7. Yi C, Maksimoska J, Marmorstein R, Kissil JL. Development of small-molecule inhibitors of the group I p21-activated kinases, emerging therapeutic targets in cancer. Biochem Pharmacol. 2010;80(5):683–9. https://doi.org/10.1016/j.bcp.2010.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arias-Romero LE, Chernoff J. p21-activated kinases in Erbb2-positive breast cancer: a new therapeutic target? Small GTPases. 2010;1(2):124–8. https://doi.org/10.4161/sgtp.1.2.14109.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ye DZ, Field J. PAK signaling in cancer. Cell Logist. 2012;2(2):105–16. https://doi.org/10.4161/cl.21882.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014;14(1):13–25.

    Article  CAS  Google Scholar 

  11. Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Chernoff J. Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res. 2013;73(12):3671–82. https://doi.org/10.1158/0008-5472.CAN-12-4453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li LH, Wu GY, Lu YZ, Chen XH, Liu BY, Zheng MH, et al. p21-activated protein kinase 1 induces the invasion of gastric cancer cells through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase-2. Oncol Rep. 2017;38(1):193–200. https://doi.org/10.3892/or.2017.5643.

    Article  CAS  PubMed  Google Scholar 

  13. Wang G, Zhang Q, Song Y, Wang X, Guo Q, Zhang J, et al. PAK1 regulates RUFY3-mediated gastric cancer cell migration and invasion. Cell Death Dis. 2015;6:e1682. https://doi.org/10.1038/cddis.2015.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Zhang J, Wang J, Cheng MS, Zhao DM, Li F. Targeting PAK1 with the small molecule drug AK963/40708899 suppresses gastric cancer cell proliferation and invasion by downregulation of PAK1 activity and PAK1-related signaling pathways. Anat Rec. 2019;302(9):1571–9. https://doi.org/10.1002/ar.24095.

    Article  CAS  Google Scholar 

  15. Fu H, Zhang W, Yuan Q, Niu M, Zhou F, Qiu Q, et al. PAK1 promotes the proliferation and inhibits apoptosis of human spermatogonial stem cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT pathways. Mol Ther Nucleic Acids. 2018;12:769–86. https://doi.org/10.1016/j.omtn.2018.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jansen VM, Bhola NE, Bauer JA, Formisano L, Lee KM, Hutchinson KE, et al. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer. Cancer Res. 2017;77(9):2488–99. https://doi.org/10.1158/0008-5472.CAN-16-2653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin XQ, Wu W, Chen X, Chen RP, Wu F, Chen ZF, et al. miR-1 inhibits migration of gastric cancer cells. Front Biosci. 2020;25:452–62.

    Article  Google Scholar 

  18. Jeremiasen M, Linder G, Hedberg J, Lundell L, Bjor O, Lindblad M, et al. Improvements in esophageal and gastric cancer care in Sweden-population-based results 2007–2016 from a national quality register. Dis Esophagus. 2019. https://doi.org/10.1093/dote/doz070.

    Article  Google Scholar 

  19. Duarte HO, Gomes J, Machado JC, Reis CA. Gastric cancer: basic aspects. Helicobacter. 2018;23(Suppl 1):e12523. https://doi.org/10.1111/hel.12523.

    Article  PubMed  Google Scholar 

  20. Song Y, Wang Y, Tong C, Xi H, Zhao X, Wang Y, et al. A unified model of the hierarchical and stochastic theories of gastric cancer. Br J Cancer. 2017;116(8):973–89. https://doi.org/10.1038/bjc.2017.54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zavros Y. Initiation and maintenance of gastric cancer: a focus on CD44 variant isoforms and cancer stem cells. Cell Mol Gastroenterol Hepatol. 2017;4(1):55–63. https://doi.org/10.1016/j.jcmgh.2017.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Symeonidis N, Lambropoulou M, Pavlidis E, Anagnostopoulos C, Tsaroucha A, Kotini A, et al. PAK1 expression in pancreatic cancer: clinicopathological characteristics and prognostic significance. Clin Med Insights Oncol. 2019;13:1179554919831990. https://doi.org/10.1177/1179554919831990.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zheng M, Liu J, Zhu M, Yin R, Dai J, Sun J, et al. Potentially functional polymorphisms in PAK1 are associated with risk of lung cancer in a Chinese population. Cancer Med. 2015;4(11):1781–7. https://doi.org/10.1002/cam4.524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ, et al. miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urol Oncol. 2014;32(6):846–54. https://doi.org/10.1016/j.urolonc.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  25. Chen MJ, Wu DW, Wang YC, Chen CY, Lee H. PAK1 confers chemoresistance and poor outcome in non-small cell lung cancer via beta-catenin-mediated stemness. Sci Rep. 2016;6:34933. https://doi.org/10.1038/srep34933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Villamar Cruz O, Prudnikova TY, Araiza-Olivera D, Perez-Plasencia C, Johnson N, Bernhardy AJ, et al. Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget. 2016;7(47):76590–603. https://doi.org/10.18632/oncotarget.12576.

    Article  PubMed  Google Scholar 

  27. Wang G, Song Y, Liu T, Wang C, Zhang Q, Liu F, et al. PAK1-mediated MORC2 phosphorylation promotes gastric tumorigenesis. Oncotarget. 2015;6(12):9877–86. https://doi.org/10.18632/oncotarget.3185.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu JS, Che XM, Chang S, Qiu GL, He SC, Fan L, et al. Beta-elemene enhances the radiosensitivity of gastric cancer cells by inhibiting Pak1 activation. World J Gastroenterol. 2015;21(34):9945–56. https://doi.org/10.3748/wjg.v21.i34.9945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Padgaonkar A, Rechkoblit O, Vasquez-Del Carpio R, Pallela V, Venkata Subbaiah D, Cosenza SC, et al. Targeting protein kinase CK2 and CDK4/6 pathways with a multi-kinase inhibitor ON108110 suppresses pro-survival signaling and growth in mantle cell lymphoma and T-acute lymphoblastic leukemia. Oncotarget. 2018;9(102):37753–65. https://doi.org/10.18632/oncotarget.26514.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cao J, Zhu Z, Wang H, Nichols TC, Lui GYL, Deng S, et al. Combining CDK4/6 inhibition with taxanes enhances anti-tumor efficacy by sustained impairment of pRB-E2F pathways in squamous cell lung cancer. Oncogene. 2019;38(21):4125–41. https://doi.org/10.1038/s41388-019-0708-7.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy CG. The role of CDK4/6 inhibitors in breast cancer. Curr Treat Options Oncol. 2019;20(6):52. https://doi.org/10.1007/s11864-019-0651-4.

    Article  PubMed  Google Scholar 

  32. Tempka D, Tokarz P, Chmielewska K, Kluska M, Pietrzak J, Rygielska Z, et al. Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair. Redox Biol. 2018;15:316–26. https://doi.org/10.1016/j.redox.2017.12.017.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WS and YQ conceived and designed the experiments, XW and HXW analyzed and interpreted the results of the experiments, and GWH and XH performed the experiments.

Corresponding author

Correspondence to Wei Song.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Wu, X., Wang, H. et al. PAK1 silencing is synthetic lethal with CDK4/6 inhibition in gastric cancer cells via regulating PDK1 expression. Human Cell 33, 377–385 (2020). https://doi.org/10.1007/s13577-019-00317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00317-6

Keywords

Navigation