Skip to main content

Advertisement

Log in

Carcinogenic roles of MAFG-AS1 in human cancers

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The MAF bZIP transcription factor G-antisense RNA 1 (MAFG-AS1) is located on chromosome 17. MAFG-AS1 was upregulated in 15 human cancers. MAFG-AS1 not only suppresses 16 miRNAs but also directly impacts 22 protein-coding genes' expression. Notably, abnormal MAFG-AS1 expression is connected to clinicopathological characteristics and a worse prognosis in a variety of cancers. Moreover, MAFG-AS1 takes its part in the tumorigenesis and progression of various human malignancies by suppressing apoptosis and promoting proliferation, migration, invasion, aerobic glycolysis, ferroptosis, angiogenesis, EMT, and metastasis. Besides, it can predict treatment effectiveness in ER + breast cancer, urothelial bladder carcinoma, and liver cancer by functioning as a trigger of resistance to tamoxifen, sorafenib, and cisplatin. This study systematically presents the functions of MAFG-AS1 in various cancers, as well as the findings of bioinformatics analyses of the MAFG-AS1, which should give clear advice for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data utilized for the present study are presented in the manuscript or supplementary file.

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    PubMed  Google Scholar 

  2. Li H, Gao J, Liu L, Zhang S. LINC00958: a promising long non-coding RNA related to cancer. Biomed Pharmacother. 2022;151: 113087.

    CAS  PubMed  Google Scholar 

  3. Cong Z, Diao Y, Xu Y, Li X, Jiang Z, Shao C, et al. Long non-coding RNA linc00665 promotes lung adenocarcinoma progression and functions as ceRNA to regulate AKR1B10-ERK signaling by sponging miR-98. Cell Death Dis. 2019;10(2):1–15.

    CAS  Google Scholar 

  4. Laurent GS, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–51.

    Google Scholar 

  5. Zhang H, Zhu J-K. Emerging roles of RNA processing factors in regulating long non-coding RNAs. RNA Biol. 2014;11(7):793–7.

    PubMed  PubMed Central  Google Scholar 

  6. Zhong C, Xie Z, Shen J, Jia Y, Duan S. LINC00665: an emerging biomarker for cancer diagnostics and therapeutics. Cells. 2022;11(9):1540.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xing C, Sun S-G, Yue Z-Q, Bai F. Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother. 2021;134:111158.

    CAS  PubMed  Google Scholar 

  8. Cao HL, Liu ZJ, Huang PL, Yue YL, Xi JN. lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206. Eur Rev Med Pharmacol Sci. 2019;23(3):1012–21.

    PubMed  Google Scholar 

  9. Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 2018;7(3):842–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lopez-Pajares V. Long non-coding RNA regulation of gene expression during differentiation. Pflügers Arch Eur J Physiol. 2016;468(6):971–81.

    CAS  Google Scholar 

  11. Zhang YX, Yuan J, Gao ZM, Zhang ZG. LncRNA TUC338 promotes invasion of lung cancer by activating MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22(2):443–9.

    PubMed  Google Scholar 

  12. Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells. 2019;8(9).

  13. Chandra Gupta S, Nandan TY. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer. 2017;140(9):1955–67.

    CAS  PubMed  Google Scholar 

  14. Fang M, Ou J, Hutchinson L, Green MR. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG island methylator phenotype. Mol Cell. 2014;55(6):904–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng YC, Liu XY, Teng L, Ji Q, Wu Y, Li JM, et al. c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat Commun. 2020;11(1):4980.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sui Y, Lin G, Zheng Y, Huang W. LncRNA MAFG-AS1 boosts the proliferation of lung adenocarcinoma cells via regulating miR-744-5p/MAFG axis. Eur J Pharmacol. 2019;859: 172465.

    CAS  PubMed  Google Scholar 

  17. Di S, Bai R, Lu D, Chen C, Ma T, Zou Z, et al. Long non-coding RNA MAFG-AS1 promotes proliferation and metastasis of breast cancer by modulating STC2 pathway. Cell Death Discov. 2022;8(1):249.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao Z, Zheng G, Gong X, Hu H, Shao L, Pang Y, et al. LncRNA MAFG-AS1 deregulated in breast cancer affects autophagy and progression of breast cancer by interacting with miR-3612 and FKBP4 invitro. Biochem Biophys Res Commun. 2022;616:95–103.

    CAS  PubMed  Google Scholar 

  19. Jia H, Wu D, Zhang Z, Li S. Regulatory effect of the MAFG-AS1/miR-150-5p/MYB axis on the proliferation and migration of breast cancer cells. Int J Oncol. 2021;58(1):33–44.

    CAS  PubMed  Google Scholar 

  20. Feng J, Wen T, Li Z, Feng L, Zhou L, Yang Z, et al. Cross-talk between the ER pathway and the lncRNA MAFG-AS1/miR-339-5p/ CDK2 axis promotes progression of ER+ breast cancer and confers tamoxifen resistance. Aging (Albany NY). 2020;12(20):20658–83.

    CAS  PubMed  Google Scholar 

  21. Ye L, Feng W, Weng H, Yuan C, Liu J, Wang Z. MAFG-AS1 aggravates the progression of pancreatic cancer by sponging miR-3196 to boost NFIX. Cancer Cell Int. 2020;20(1):591.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu ZQ, Li HC, Teng F, Chang QM, Wu XB, Feng JF, et al. Long noncoding RNA MAFG-AS1 facilitates the progression of hepatocellular carcinoma via targeting miR-3196/OTX1 axis. Eur Rev Med Pharmacol Sci. 2020;24(23):12131–43.

    PubMed  Google Scholar 

  23. Cui S, Yang X, Zhang L, Zhao Y, Yan W. LncRNA MAFG-AS1 promotes the progression of colorectal cancer by sponging miR-147b and activation of NDUFA4. Biochem Biophys Res Commun. 2018;506(1):251–8.

    CAS  PubMed  Google Scholar 

  24. Zhang F, Li Y, Gan L, Tong X, Qi D, Wang Q, et al. HBx-upregulated MAFG-AS1 promotes cell proliferation and migration of hepatoma cells by enhancing MAFG expression and stabilizing nonmuscle myosin IIA. Faseb j. 2021;35(5): e21529.

    CAS  PubMed  Google Scholar 

  25. Chen T, Huang B, Pan Y. Long non-coding RNA MAFG-AS1 promotes cell proliferation, migration, and EMT by miR-3196/STRN4 in drug-resistant cells of liver cancer. Front Cell Dev Biol. 2021;9:688603.

    PubMed  PubMed Central  Google Scholar 

  26. Zhao H, Li J, Yan X, Bian X. LncRNA MAFG-AS1 suppresses the maturation of miR-34a to promote glioblastoma cell proliferation. Cancer Manag Res. 2021;13:3493–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Qian C-J, Xu Z-R, Chen L-Y, Wang Y-C, Yao J. LncRNA MAFG-AS1 accelerates cell migration, invasion and aerobic glycolysis of esophageal squamous cell carcinoma cells via miR-765/PDX1 Axis. Cancer Manag Res. 2020;12:6895–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang X, Li R. lncRNA MAFG-AS1 enhances radioresistance of glioblastoma cells via miR-642a-5p/Notch1 axis. Acta Neurobiol Exp. 2022;82:315–26.

    Google Scholar 

  29. Li R, Sun Q, Lyu M, Liu J. Effect of lncRNA MAFG-AS1 regulating miR-532-3p expression on glycolysis of lung cancer A549 cells. Chin J Cancer Biother. 2022;28(7):665–71.

    Google Scholar 

  30. Wu Q, Jiang J. LncRNA MAFG-AS1 promotes lung adenocarcinoma cell migration and invasion by targeting miR-3196 and regulating SOX12 expression. Mol Biotechnol. 2022;64:970–83.

    CAS  PubMed  Google Scholar 

  31. Jia YC, Wang JY, Liu YY, Li B, Guo H, Zang AM. LncRNA MAFG-AS1 facilitates the migration and invasion of NSCLC cell via sponging miR-339-5p from MMP15. Cell Biol Int. 2019;43(4):384–93.

    CAS  PubMed  Google Scholar 

  32. Dai J, Zhang S, Sun H, Wu Y, Yan M. LncRNA MAFG-AS1 affects the tumorigenesis of breast cancer cells via the miR-574-5p/SOD2 axis. Biochem Biophys Res Commun. 2021;560:119–25.

    CAS  PubMed  Google Scholar 

  33. Su X, Yu Z, Zhang Y, Chen J, Wei L, Sun L. Construction and analysis of the dysregulated ceRNA network and identification of risk long noncoding RNAs in breast cancer. Front Genet. 2021;12: 664393.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding M, Fu Y, Guo F, Chen H, Fu X, Tan W, et al. Long non-coding RNA MAFG-AS1 knockdown blocks malignant progression in breast cancer cells by inactivating JAK2/STAT3 signaling pathway via MAFG-AS1/miR-3196/TFAP2A axis. Int J Clin Exp Pathol. 2020;13(10):2455–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li H, Zhang GY, Pan CH, Zhang XY, Su XY. LncRNA MAFG-AS1 promotes the aggressiveness of breast carcinoma through regulating miR-339-5p/MMP15. Eur Rev Med Pharmacol Sci. 2019;23(7):2838–46.

    CAS  PubMed  Google Scholar 

  36. Du W, Chen W, Shu Z, Xiang D, Bi K, Lu Y, et al. Identification of prognostic biomarkers of hepatocellular carcinoma via long noncoding RNA expression and copy number alterations. Epigenomics. 2020;12(15):1303–15.

    CAS  PubMed  Google Scholar 

  37. Ouyang H, Zhang L, Xie Z, Ma S. Long noncoding RNA MAFG-AS1 promotes proliferation, migration and invasion of hepatocellular carcinoma cells through downregulation of miR-6852. Exp Ther Med. 2019;18(4):2547–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang K, Lu Z, Li L, Peng G, Zhou W, Ye Q. Construction of a ceRNA network and a genomic-clinicopathologic nomogram to predict survival for HBV-related HCC. Hum Cell. 2021;34(6):1830–42.

    CAS  PubMed  Google Scholar 

  39. Tian Y, Wang J, Tian G, Li B, Chen M, Sun X. Long non-coding RNA MAFG-AS1 as a potential biomarker for hepatocellular carcinoma: linkage with tumor features, markers, liver functions, and survival profile. Front Surg. 2022;9: 848831.

    PubMed  PubMed Central  Google Scholar 

  40. Li C, Wu R, Xing Y. MAFG-AS1 is a novel clinical biomarker for clinical progression and unfavorable prognosis in gastric cancer. Cell Cycle. 2020;19(5):601–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Qian C, Xu Z, Chen L, Sun Y, Yao J. lncRNA MAFG-AS1 promotes migration, invasion and aerobic glycolysis of gastric cancer AGS cells by regulating miR-11181-3p/GLG1 axis. Chin J Cancer Biother. 2020;27(9):992–8.

    Google Scholar 

  42. Fu Y, Wen J, Li X, Gong M, Guo Z, Wang G. LncRNA MAFG-AS1 upregulates polo-like kinase-1 by sponging miR-505 to promote gastric adenocarcinoma cell proliferation. Crit Rev Eukaryot Gene Expr. 2021;31(5):27–32.

    PubMed  Google Scholar 

  43. Cui W, Wang Y, Shen X, Wu X, Liu H, Xu X. High-expression of LncRNA MAFG-AS1 is associated with the prognostic of patients with colorectal cancer. Rev Assoc Med Bras. 2020;66(11):1530–5.

    PubMed  Google Scholar 

  44. Ruan Z, Deng H, Liang M, Xu Z, Lai M, Ren H, et al. Downregulation of long non-coding RNA MAFG-AS1 represses tumorigenesis of colorectal cancer cells through the microRNA-149-3p-dependent inhibition of HOXB8. Cancer Cell Int. 2020;20:511.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai Y, Ren C, Wang B, Xue J, Li F, Liu J, et al. LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther. 2022;29(3–4):277–91.

    CAS  PubMed  Google Scholar 

  46. Wang Y, Feng YC, Gan Y, Teng L, Wang L, La T, et al. LncRNA MILIP links YBX1 to translational activation of Snai1 and promotes metastasis in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2022;41(1):260.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang K, Zhong W, Long Z, Guo Y, Zhong C, Yang T, et al. 5-Methylcytosine RNA methyltransferases-related long non-coding RNA to develop and validate biochemical recurrence signature in prostate cancer. Front Mol Biosci. 2021;8:775304.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li P, Shi Y, Guo M, Xu H, Zhan M, Wang Z, et al. MAFG-AS1 is a prognostic biomarker and facilitates prostate cancer progression. Front Oncol. 2022;12: 856580.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiang L, Zeng Q, Liu J, Xiao M, He D, Zhang Q, et al. MAFG-AS1/MAFG positive feedback loop contributes to cisplatin resistance in bladder urothelial carcinoma through antagonistic ferroptosis. Sci Bull. 2021;66(17):1773–88.

    CAS  Google Scholar 

  50. Zheng Z, Lai C, Li W, Zhang C, Ma K, Yao Y. Identification of a novel glycolysis-related LncRNA signature for predicting overall survival in patients with bladder cancer. Front Genet. 2021;12: 720421.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao M, Liu J, Xiang L, Zhao K, He D, Zeng Q, et al. MAFG-AS1 promotes tumor progression via regulation of the HuR/PTBP1 axis in bladder urothelial carcinoma. Clin Transl Med. 2020;10(8):e241.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cui Y, Zhou Z, Chai Y, Che X, Zhang Y. Identification of a nomogram from ferroptosis-related long noncoding RNAs signature to analyze overall survival in patients with bladder cancer. J Oncol. 2021;2021:8533464.

    PubMed  PubMed Central  Google Scholar 

  53. Tang C, Wu Y, Wang X, Chen K, Tang Z, Guo X. LncRNA MAFG-AS1 regulates miR-125b-5p/SphK1 axis to promote the proliferation, migration, and invasion of bladder cancer cells. Hum Cell. 2021;34(2):588–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun X, Cai Y, Hu X, Mo M, Zhao C, He W, et al. Long noncoding RNA MAFG-AS1 facilitates bladder cancer tumorigenesis via regulation of miR-143-3p/SERPINE1 axis. Transl Cancer Res. 2020;9(11):7214–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li D, Zhong S, Zhu Z, Jiang X, Zhang J, Gu J, et al. LncRNA MAFG-AS1 promotes the progression of bladder cancer by targeting the miR-143-3p/COX-2 axis. Pathobiology. 2020;87(6):345–55.

    CAS  PubMed  Google Scholar 

  56. Qing L, Gu P, Liu M, Shen J, Liu X, Guang R, et al. Extracellular matrix-related Six-lncRNA signature as a novel prognostic biomarker for bladder cancer. Onco Targets Ther. 2020;13:12521–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou M, Zhang Z, Bao S, Hou P, Yan C, Su J, et al. Computational recognition of lncRNA signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer. Brief Bioinform. 2021;22(3):bbaa047.

    PubMed  Google Scholar 

  58. Mo X, Hu D, Li Y, Nai A, Ma F, Bashir S, et al. A novel pyroptosis-related prognostic lncRNAs signature, tumor immune microenvironment and the associated regulation axes in bladder cancer. Front Genet. 2022;13: 936305.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan W, Yuan Y, Huang H, Ma J, Li Y, Gou Y, et al. Comprehensive analysis of autophagy related long non-coding RNAs in prognosis, immunity, and treatment of muscular invasive bladder cancer. Sci Rep. 2022;12(1):11242.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yao Q, Zhang L, Liu Z, Yu L, Wang Y, Liu J, et al. LncRNA MAFG-AS1-induced acute myeloid leukemia development via modulating miR-147b/HOXA9. Environ Sci Pollut Res Int. 2022;30:19250–8.

    PubMed  Google Scholar 

  61. Zhang H, Ma Q, Yang T, Zhang T, Zhou Y. The expression and function of lncRNA MAFG-AS1 in osteosarcoma. J Modern Oncol. 2018;3536–40.

  62. Wei L, Sun C, Zhang Y, Han N, Sun S. miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-A. Gene Ther. 2022;29(1):28–40.

    CAS  PubMed  Google Scholar 

  63. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24.

    CAS  PubMed  Google Scholar 

  66. Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G, Ruiz Esparza-Garrido R, et al. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer. Oncol Rep. 2014;32(1):3–15.

    PubMed  Google Scholar 

  67. Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5(1):87.

    PubMed  PubMed Central  Google Scholar 

  68. Lu Y-T, Xu T, Iqbal M, Hsieh T-C, Luo Z, Liang G, et al. FOXC1 binds enhancers and promotes cisplatin resistance in bladder cancer. Cancers (Basel). 2022;14(7):1717.

    CAS  PubMed  Google Scholar 

  69. Pinkney HR, Wright BM, Diermeier SD. The lncRNA toolkit: databases and in silico tools for lncRNA analysis. Non-Coding RNA. 2020;6(4):49.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lorenz A, Bernhart S, Neubock R, Hofacker I. The vienna RNA websuite. Nucleic Acids Res. 2008;36(Suppl 2):W70–4.

    PubMed  PubMed Central  Google Scholar 

  71. Liu C-J, Hu F-F, Xia M-X, Han L, Zhang Q, Guo A-Y. GSCALite: a web server for gene set cancer analysis. Bioinformatics. 2018;34(21):3771–2.

    CAS  PubMed  Google Scholar 

  72. Ding W, Chen J, Feng G, Chen G, Wu J, Guo Y, et al. DNMIVD: DNA methylation interactive visualization database. Nucleic Acids Res. 2019;48(D1):D856–62.

    PubMed Central  Google Scholar 

  73. Ding W, Chen G, Shi T. Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis. Epigenetics. 2019;14(1):67–80.

    PubMed  PubMed Central  Google Scholar 

  74. Ding W, Feng G, Hu Y, Chen G, Shi T. Co-occurrence and mutual exclusivity analysis of DNA methylation reveals distinct subtypes in multiple cancers. Front Cell Dev Biol. 2020;8:20.

    PubMed  PubMed Central  Google Scholar 

  75. Szcześniak MW, Makałowska I. lncRNA-RNA interactions across the human transcriptome. PLoS ONE. 2016;11(3): e0150353.

    PubMed  PubMed Central  Google Scholar 

  76. Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v20: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013;42(D1):D92–7.

    PubMed  PubMed Central  Google Scholar 

  77. Janakiraman H, House RP, Gangaraju VK, Diehl JA, Howe PH, Palanisamy V. The long (lncRNA) and short (miRNA) of it: TGFβ-mediated control of RNA-binding proteins and noncoding RNAs. Mol Cancer Res. 2018;16(4):567–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang Y, Tian Y, Liu S, Wang Z, Xing Q. Prognostic value and immunological role of AXL gene in clear cell renal cell carcinoma associated with identifying LncRNA/RBP/AXL mRNA networks. Cancer Cell Int. 2021;21(1):625.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Choi S-W, Kim H-W, Nam J-W. The small peptide world in long noncoding RNAs. Brief Bioinform. 2019;20(5):1853–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu S, Guo B, Zhang L, Zhu X, Zhao P, Deng J, et al. A micropeptide XBP1SBM encoded by lncRNA promotes angiogenesis and metastasis of TNBC via XBP1s pathway. Oncogene. 2022;41(15):2163–72.

    CAS  PubMed  Google Scholar 

  81. Ge Q, Jia D, Cen D, Qi Y, Shi C, Li J, et al. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. J Clin Invest. 2021. https://doi.org/10.1172/JCI152911.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lv D, Chang Z, Cai Y, Li J, Wang L, Jiang Q, et al. TransLnc: a comprehensive resource for translatable lncRNAs extends immunopeptidome. Nucleic Acids Res. 2021;50(D1):D413–20.

    PubMed Central  Google Scholar 

  83. Sun T-T, He J, Liang Q, Ren L-L, Yan T-T, Yu T-C, et al. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 2016;6(7):784–801.

    CAS  PubMed  Google Scholar 

  84. Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol. 2019;112:82–92.

    CAS  PubMed  Google Scholar 

  85. Kang J, Tang Q, He J, Li L, Yang N, Yu S, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 2022;50(D1):D326–32.

    CAS  PubMed  Google Scholar 

  86. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016;2016:baw100.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by a grant from the office of the Vice-Chancellor for Research, the Hormozgan University of Medical Sciences, Bandar Abbas. This research was approved by the ethics committee of Hormozgan University of Medical Science.

Author information

Authors and Affiliations

Authors

Contributions

MA designed the study. MA, FM and LH drafted the manuscript. MRA, SGF, MP, PM and MHG edited manuscript. All authors validated and approved the final manuscript.

Corresponding authors

Correspondence to Pegah Mousavi or Soudeh Ghafouri-Fard.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mohsen Ahmadi ad Firouzeh Morshedzadeh are equally first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1374 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Morshedzadeh, F., Ghaderian, S.M.H. et al. Carcinogenic roles of MAFG-AS1 in human cancers. Clin Transl Oncol 26, 52–68 (2024). https://doi.org/10.1007/s12094-023-03246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03246-x

Keywords

Navigation