Skip to main content

Advertisement

Log in

Plant-Derived Natural Compounds as an Emerging Antiviral in Combating COVID-19

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human virus that burst at Wuhan in China and spread quickly over the world, leading to millions of deaths globally. The journey of this deadly virus to different mutant strains is still ongoing. The plethora of drugs and vaccines have been tested to cope up this pandemic. The herbal plants and different spices have received great attention during pandemic, because of their anti-inflammatory, and immunomodulatory properties in treating viruses and their symptoms. Also, it has been shown that nano-formulation of phytochemicals has potential therapeutic effect against COVID-19. Furthermore, the plant derived compound nano-formulation specifically increases its antiviral property by enhancing its bioavailability, solubility, and target-specific delivery system. This review highlights the potentiality of herbal plants and their phytochemical against SARS-CoV-2 utilizing different mechanisms such as blocking the ACE-2 receptors, inhibiting the main proteases, binding spike proteins and reducing the cytokine storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int. Accessed 21 June 2023

  2. Hafeez A, Ahmad S, Siddqui SA et al (2020) A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention. Euras J Med Oncol 4:116–125. https://doi.org/10.14744/ejmo.2020.90853

    Article  Google Scholar 

  3. Yang Y, Peng F, Wang R et al (2020) The deadly coronaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 109:102434. https://doi.org/10.1016/j.jaut.2020.102434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thakur V, Bhola S, Thakur P et al (2022) Waves and variants of SARS-CoV-2: understanding the causes and effect of the COVID-19 catastrophe. Infection 50:309–325. https://doi.org/10.1007/s15010-021-01734-2

    Article  CAS  PubMed  Google Scholar 

  5. Fiolet T, Kherabi Y, MacDonald C-J et al (2022) Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect 28:202–221. https://doi.org/10.1016/j.cmi.2021.10.005

    Article  CAS  PubMed  Google Scholar 

  6. Lu H (2020) Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 14:69–71. https://doi.org/10.5582/bst.2020.01020

    Article  CAS  PubMed  Google Scholar 

  7. Shereen MA, Khan S, Kazmi A et al (2020) COVID-19 infection: emergence, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98. https://doi.org/10.1016/j.jare.2020.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sironi M, Hasnain SE, Rosenthal B et al (2020) SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infect Genet Evol 84:104384. https://doi.org/10.1016/j.meegid.2020.104384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sungnak W, Huang N, Bécavin C et al (2020) SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 26:681–687. https://doi.org/10.1038/s41591-020-0868-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corvillo F, Ceccarini G, Nozal P et al (2020) Immunological features of patients affected by Barraquer–Simons syndrome. Orphanet J Rare Dis 15:9. https://doi.org/10.1186/s13023-019-1292-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deng X, Hackbart M, Mettelman RC et al (2017) Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc Natl Acad Sci 114:E4251–E4260. https://doi.org/10.1073/pnas.1618310114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mani JS, Johnson JB, Steel JC et al (2020) Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 284:197989. https://doi.org/10.1016/j.virusres.2020.197989

    Article  CAS  PubMed  Google Scholar 

  14. Cosar B, Karagulleoglu ZY, Unal S et al (2022) SARS-CoV-2 mutations and their viral variants. Cytokine Growth Factor Rev 63:10–22. https://doi.org/10.1016/j.cytogfr.2021.06.001

    Article  CAS  PubMed  Google Scholar 

  15. Korber B, Fischer WM, Gnanakaran S et al (2020) Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182:812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yurkovetskiy L, Wang X, Pascal KE et al (2020) Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183:739-751.e8. https://doi.org/10.1016/j.cell.2020.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shahhosseini N, Babuadze GG, Wong G, Kobinger GP (2021) Mutation signatures and in silico docking of novel SARS-CoV-2 variants of concern. Microorganisms 9:926. https://doi.org/10.3390/microorganisms9050926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McLean G, Kamil J, Lee B et al (2022) The impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccines. MBio 13:e0297921. https://doi.org/10.1128/mbio.02979-21

    Article  CAS  PubMed  Google Scholar 

  19. Merad M, Blish CA, Sallusto F, Iwasaki A (2022) The immunology and immunopathology of COVID-19. Science 375:1122–1127. https://doi.org/10.1126/science.abm8108

    Article  CAS  PubMed  Google Scholar 

  20. Gibellini L, De Biasi S, Paolini A et al (2020) Altered bioenergetics and mitochondrial dysfunction of monocytes in patients with COVID-19 pneumonia. EMBO Mol Med 12:e13001. https://doi.org/10.15252/emmm.202013001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Milani D, Caruso L, Zauli E et al (2022) p53/NF-kB balance in SARS-CoV-2 infection: from OMICs, genomics and pharmacogenomics insights to tailored therapeutic perspectives (COVIDomics). Front Pharmacol 13:1

    Article  Google Scholar 

  22. Bastard P, Zhang Q, Zhang S-Y et al (2022) Type I interferons and SARS-CoV-2: from cells to organisms. Curr Opin Immunol 74:172–182. https://doi.org/10.1016/j.coi.2022.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang C, Wu Z, Li J-W et al (2020) Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 55:105954. https://doi.org/10.1016/j.ijantimicag.2020.105954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karn V, Ahmed S, Tsai L-W et al (2021) Extracellular vesicle-based therapy for COVID-19: promises, challenges and future prospects. Biomedicines 9:1373. https://doi.org/10.3390/biomedicines9101373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagoor Meeran MF, Javed H, Sharma C et al (2021) Can Echinacea be a potential candidate to target immunity, inflammation, and infection—the trinity of coronavirus disease 2019. Heliyon 7:e05990. https://doi.org/10.1016/j.heliyon.2021.e05990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaiswara PK, Shukla SK (2023) Chemotherapy-Mediated Neuronal Aberration. Pharmaceuticals (Basel) 16:1165. https://doi.org/10.3390/ph16081165

    Article  CAS  PubMed  Google Scholar 

  27. Shukla SK, Dasgupta A, Mehla K et al (2015) Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth. Oncotarget 6:41146–41161. https://doi.org/10.18632/oncotarget.5843

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr Pharm Des 10:3813–3833. https://doi.org/10.2174/1381612043382710

    Article  CAS  PubMed  Google Scholar 

  29. Antonelli M, Donelli D, Firenzuoli F (2020) Ginseng integrative supplementation for seasonal acute upper respiratory infections: a systematic review and meta-analysis. Complement Ther Med 52:102457. https://doi.org/10.1016/j.ctim.2020.102457

    Article  PubMed  PubMed Central  Google Scholar 

  30. Petitjean SJL, Lecocq M, Lelong C et al (2022) Salvia miltiorrhiza Bunge as a potential natural compound against COVID-19. Cells 11:1311. https://doi.org/10.3390/cells11081311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thuy BTP, My TTA, Hai NTT et al (2020) Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega 5:8312–8320. https://doi.org/10.1021/acsomega.0c00772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silveira D, Prieto-Garcia JM, Boylan F et al (2020) COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol 11:581840. https://doi.org/10.3389/fphar.2020.581840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lane KE, Wilson M, Hellon TG, Davies IG (2022) Bioavailability and conversion of plant based sources of omega-3 fatty acids - a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci Nutr 62:4982–4997. https://doi.org/10.1080/10408398.2021.1880364

    Article  CAS  PubMed  Google Scholar 

  34. Lordan R, Rando HM, COVID-19 Review Consortium, Greene CS (2021) Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 6:1. https://doi.org/10.1128/msystems.00122-21

  35. Hathaway D, Pandav K, Patel M et al (2020) Omega 3 fatty acids and COVID-19: a comprehensive review. Infect Chemother 52:478–495. https://doi.org/10.3947/ic.2020.52.4.478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ranucci M, Ballotta A, Di Dedda U et al (2020) The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 18:1747–1751. https://doi.org/10.1111/jth.14854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aghababaei F, Hadidi M (2023) Recent advances in potential health benefits of quercetin. Pharmaceuticals 16:1020. https://doi.org/10.3390/ph16071020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Önal H, Arslan B, Üçüncü Ergun N et al (2021) Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial. Turk J Biol 45:518–529. https://doi.org/10.3906/biy-2104-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song JH, Shim JK, Choi HJ (2011) Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol J 8:460. https://doi.org/10.1186/1743-422X-8-460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roh C, Jo SK (2011) Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J Chem Technol Biotechnol 86:1475–1479. https://doi.org/10.1002/jctb.2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song YH, Kim DW, Curtis-Long MJ et al (2014) Papain-Like Protease (PLpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits. Biol Pharm Bull 37:1021–1028. https://doi.org/10.1248/bpb.b14-00026

    Article  CAS  PubMed  Google Scholar 

  42. Park J-Y, Kim JH, Kim YM et al (2012) Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 20:5928–5935. https://doi.org/10.1016/j.bmc.2012.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller C, Schulte FW, Lange-Grünweller K et al (2018) Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res 150:123–129. https://doi.org/10.1016/j.antiviral.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, Xiang R, Huo S et al (2021) Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 6:233. https://doi.org/10.1038/s41392-021-00653-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B et al (2020) Pharmacological activities of psoralidin: a comprehensive review of the molecular mechanisms of action. Front Pharmacol 11:1

    Article  Google Scholar 

  46. Cho JK, Curtis-Long MJ, Lee KH et al (2013) Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 21:3051–3057. https://doi.org/10.1016/j.bmc.2013.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding Y, Wang H, Shen H et al (2003) The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 200:282–289. https://doi.org/10.1002/path.1440

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ebob OT, Babiaka SB, Ntie-Kang F (2021) Natural products as potential lead compounds for drug discovery against SARS-CoV-2. http://www.xml-data.org/YYTRCW/html/2021/6/1639119100996-314880077.htm. Accessed 22 Nov 2022

  49. Majnooni MB, Fakhri S, Shokoohinia Y et al (2020) Isofraxidin: synthesis, biosynthesis, isolation, pharmacokinetic and pharmacological properties. Molecules 25:2040. https://doi.org/10.3390/molecules25092040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yi L, Li Z, Yuan K et al (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78:11334–11339. https://doi.org/10.1128/JVI.78.20.11334-11339.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jia Q, Fu J, Liang P et al (2022) Investigating interactions between chloroquine/hydroxychloroquine and their single enantiomers and angiotensin-converting enzyme 2 by a cell membrane chromatography method. J Sep Sci 45:456–467. https://doi.org/10.1002/jssc.202100570

    Article  CAS  PubMed  Google Scholar 

  52. Benarba B, Pandiella A (2020) Medicinal plants as sources of active molecules against COVID-19. Front Pharmacol 11:1189. https://doi.org/10.3389/fphar.2020.01189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park J-Y, Yuk HJ, Ryu HW et al (2017) Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 32:504–515. https://doi.org/10.1080/14756366.2016.1265519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Musa MA, Cooperwood JS, Khan MOF (2008) A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 15:2664–2679. https://doi.org/10.2174/092986708786242877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seif F, Khoshmirsafa M, Aazami H et al (2017) The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 15:23. https://doi.org/10.1186/s12964-017-0177-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Javed M, Saleem A, Xaveria A, Akhtar MF (2022) Daphnetin: a bioactive natural coumarin with diverse therapeutic potentials. Front Pharmacol 13:1

    Article  Google Scholar 

  57. Yu P-J, Li J-R, Zhu Z-G et al (2013) Praeruptorin D and E attenuate lipopolysaccharide/hydrochloric acid induced acute lung injury in mice. Eur J Pharmacol 710:39–48. https://doi.org/10.1016/j.ejphar.2013.03.050

    Article  CAS  PubMed  Google Scholar 

  58. Lee H-C, Liu F-C, Tsai C-N et al (2020) Esculetin ameliorates lipopolysaccharide-induced acute lung injury in mice via modulation of the AKT/ERK/NF-κB and RORγt/IL-17 pathways. Inflammation 43:962–974. https://doi.org/10.1007/s10753-020-01182-4

    Article  CAS  PubMed  Google Scholar 

  59. Jin L, Ying Z-H, Yu C-H et al (2020) Isofraxidin ameliorated influenza viral inflammation in rodents via inhibiting platelet aggregation. Int Immunopharmacol 84:106521. https://doi.org/10.1016/j.intimp.2020.106521

    Article  CAS  PubMed  Google Scholar 

  60. Grant OC, Montgomery D, Ito K, Woods RJ (2020) Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci Rep 10:14991. https://doi.org/10.1038/s41598-020-71748-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D’Aoust M-A, Couture MM-J, Charland N et al (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619. https://doi.org/10.1111/j.1467-7652.2009.00496.x

    Article  CAS  PubMed  Google Scholar 

  62. Sa-ngiamsuntorn K, Suksatu A, Pewkliang Y et al (2021) Anti-SARS-CoV-2 activity of andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod 84:1261–1270. https://doi.org/10.1021/acs.jnatprod.0c01324

    Article  CAS  PubMed  Google Scholar 

  63. Intharuksa A, Arunotayanun W, Yooin W, Sirisa-Ard P (2022) A Comprehensive review of Andrographis paniculata (Burm. F.) nees and its constituents as potential lead compounds for COVID-19 drug discovery. Molecules 27:4479. https://doi.org/10.3390/molecules27144479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sampangi-Ramaiah MH, Vishwakarma R, Shaanker RU (2020) Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci 118:7

    Article  Google Scholar 

  65. Maurya DK, Sharma D (2022) Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. J Biomol Struct Dyn 40(9):3949–3964. https://doi.org/10.1080/07391102.2020.1852119

    Article  CAS  PubMed  Google Scholar 

  66. Varshney KK, Varshney M, Nath B (2020) Molecular modeling of isolated phytochemicals from Ocimum sanctum towards exploring potential inhibitors of SARS coronavirus main protease and papain-like protease to treat COVID-19

  67. Jindal D, Rani V (2023) In silico studies of phytoconstituents from Piper longum and Ocimum sanctum as ACE2 and TMRSS2 inhibitors: strategies to combat COVID-19. Appl Biochem Biotechnol 195:2618–2635. https://doi.org/10.1007/s12010-022-03827-6

    Article  CAS  PubMed  Google Scholar 

  68. Patwardhan B, Chavan-Gautam P, Gautam M et al (2020) Ayurveda rasayana in prophylaxis of COVID-19. Curr Sci 118:3

    Google Scholar 

  69. Jamal QMS (2022) Antiviral Potential of Plants against COVID-19 during Outbreaks—An Update. Int J Mol Sci 23:13564. https://doi.org/10.3390/ijms232113564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mondal S, Varma S, Bamola VD et al (2011) Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J Ethnopharmacol 136:452–456. https://doi.org/10.1016/j.jep.2011.05.012

    Article  PubMed  Google Scholar 

  71. Sharma U, Bala M, Kumar N et al (2012) Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol 141:918–926. https://doi.org/10.1016/j.jep.2012.03.027

    Article  CAS  PubMed  Google Scholar 

  72. Chowdhury P (2021) In silico investigation of phytoconstituents from Indian medicinal herb “Tinospora cordifolia (giloy)” against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn 39:6792–6809. https://doi.org/10.1080/07391102.2020.1803968

    Article  CAS  PubMed  Google Scholar 

  73. Balkrishna A, Pokhrel S, Varshney A (2021) Tinocordiside from Tinospora cordifolia (Giloy) may curb SARS-CoV-2 contagion by disrupting the electrostatic interactions between host ACE2 and viral S-protein receptor binding domain. Comb Chem High Throughput Screen 24:1795–1802. https://doi.org/10.2174/1386207323666201110152615

    Article  CAS  PubMed  Google Scholar 

  74. Sagar V, Kumar AH (2020) Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. Biol Eng Med Sci Rep 6:06–08. https://doi.org/10.5530/bems.6.1.2

    Article  Google Scholar 

  75. Fu X, Wang Z, Li L et al (2016) Novel chemical ligands to ebola virus and marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. Sci Rep 6:29680. https://doi.org/10.1038/srep29680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Padiya R, Banerjee SK (2013) Garlic as an anti-diabetic agent: recent progress and patent reviews. Recent Pat Food Nutr Agric 5:105–127. https://doi.org/10.2174/18761429113059990002

    Article  CAS  PubMed  Google Scholar 

  77. Donma MM, Donma O (2020) The effects of allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses 144:109934. https://doi.org/10.1016/j.mehy.2020.109934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khubber S, Hashemifesharaki R, Mohammadi M, Gharibzahedi SMT (2020) Garlic (Allium sativum L): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutrit J 19:124. https://doi.org/10.1186/s12937-020-00643-8

    Article  CAS  Google Scholar 

  79. Pandey P, Khan F, Kumar A et al (2021) Screening of potent inhibitors against 2019 novel coronavirus (Covid-19) from Alliumsativum and Allium cepa: an in silico approach. Biointerface Research in Applied Chemistry 1:7981–7993

    Google Scholar 

  80. Ansari M, Porouhan P, Mohammadianpanah M et al (2016) Efficacy of ginger in control of chemotherapy induced nausea and vomiting in breast cancer patients receiving doxorubicin-based chemotherapy. Asian Pac J Cancer Prev 17:3877–3880

    PubMed  Google Scholar 

  81. Goswami D, Kumar M, Ghosh SK, Das (2020) A natural product compounds in alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors

  82. Padilla-S L, Rodríguez A, Gonzales MM et al (2014) Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro. Arch Virol 159:573–579. https://doi.org/10.1007/s00705-013-1849-6

    Article  CAS  PubMed  Google Scholar 

  83. Han S, Xu J, Guo X, Huang M (2018) Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol 45:84–93. https://doi.org/10.1111/1440-1681.12848

    Article  CAS  PubMed  Google Scholar 

  84. Zahedipour F, Hosseini SA, Sathyapalan T et al (2020) Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 34:2911–2920. https://doi.org/10.1002/ptr.6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maurya VK, Kumar S, Prasad AK et al (2020) Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease 31:179–193. https://doi.org/10.1007/s13337-020-00598-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khaerunnisa S, Kurniawan H, Awaluddin R, et al (2020) Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. https://doi.org/10.20944/preprints202003.0226.v1

  87. Dorri M, Hashemitabar S, Hosseinzadeh H (2018) Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 41:338–351. https://doi.org/10.1080/01480545.2017.1417995

    Article  CAS  PubMed  Google Scholar 

  88. Ibrahim IM, Abdelmalek DH, Elfiky AA (2019) GRP78: a cell’s response to stress. Life Sci 226:156–163. https://doi.org/10.1016/j.lfs.2019.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA (2020) COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect 80:554–562. https://doi.org/10.1016/j.jinf.2020.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Neto JGO, Boechat SK, Romão JS et al (2020) Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. J Nutr Biochem 77:108321. https://doi.org/10.1016/j.jnutbio.2019.108321

    Article  CAS  PubMed  Google Scholar 

  91. Elfiky AA (2021) Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn 39:3194–3203. https://doi.org/10.1080/07391102.2020.1761881

    Article  CAS  PubMed  Google Scholar 

  92. Vijayakumar M, Janani B, Kannappan P et al (2022) In silico identification of potential inhibitors against main protease of SARS-CoV-2 6LU7 from Andrographis panniculata via molecular docking, binding energy calculations and molecular dynamics simulation studies. Saudi J Biol Sci 29:18–29. https://doi.org/10.1016/j.sjbs.2021.10.060

    Article  CAS  PubMed  Google Scholar 

  93. Gautam S, Gautam A, Chhetri S, Bhattarai U (2022) Immunity against COVID-19: Potential role of Ayush Kwath. J Ayurveda Integrat Med 13:100350. https://doi.org/10.1016/j.jaim.2020.08.003

    Article  CAS  Google Scholar 

  94. Stohs SJ, Hartman MJ (2015) Review of the Safety and Efficacy of Moringa oleifera. Phytother Res 29:796–804. https://doi.org/10.1002/ptr.5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Umar HI, Josiah SS, Saliu TP et al (2021) In-silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. J Taibah Univ Med Sci 16:162–176. https://doi.org/10.1016/j.jtumed.2020.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gupta SC, Prasad S, Tyagi AK et al (2017) Neem (Azadirachta indica): an indian traditional panacea with modern molecular basis. Phytomedicine 34:14–20. https://doi.org/10.1016/j.phymed.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  97. Subramanian S (2020) Nearly 20+ compounds in Neem leaves extract exhibit high binding affinity with some of them as high as −14.3 kcal/mol against COVID-19 main protease (Mpro) : a molecular docking study

  98. Baildya N, Khan AA, Ghosh NN et al (2021) Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: an insight from molecular docking and MD-simulation studies. J Mol Struct 1227:129390. https://doi.org/10.1016/j.molstruc.2020.129390

    Article  CAS  PubMed  Google Scholar 

  99. Dwivedi VD, Bharadwaj S, Afroz S et al (2021) Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J Biomol Struct Dyn 39:1417–1430. https://doi.org/10.1080/07391102.2020.1734485

    Article  CAS  PubMed  Google Scholar 

  100. Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T (2019) A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 11:474. https://doi.org/10.3390/nu11020474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kanbarkar N, Mishra S (2021) Matrix metalloproteinase inhibitors identified from Camellia sinensis for COVID-19 prophylaxis: an in silico approach. Adv Tradit Med 21:173–188. https://doi.org/10.1007/s13596-020-00508-9

    Article  CAS  Google Scholar 

  102. Upadhyay S, Tripathi PK, Singh M et al (2020) Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother Res 34:3411–3419. https://doi.org/10.1002/ptr.6802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chowdhury P, Barooah AK (2020) Tea bioactive modulate innate immunity: in perception to COVID-19 pandemic. Front Immunol 11:1

    Article  Google Scholar 

  104. Farzana M, Shahriar S, Jeba FR et al (2022) Functional food: complementary to fight against COVID-19. Beni Suef Univ J Basic Appl Sci 11:33. https://doi.org/10.1186/s43088-022-00217-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sanjay Kumar is highly grateful to Sharda University for proving the resources. Also, biorender software is highly acknowledged for artwork and schemes.

Author information

Authors and Affiliations

Authors

Contributions

MS and SHL collected data and prepared original draft of the manuscript. RD, SK, KKC and SK edited and reviewed the manuscript. SK and KKC conceived the idea and supervised the project. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kundan Kumar Chaubey or Sanjay Kumar.

Ethics declarations

Conflict of interest

All authors declare no competing interests with the work presented in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Lo, SH., Dubey, R. et al. Plant-Derived Natural Compounds as an Emerging Antiviral in Combating COVID-19. Indian J Microbiol 63, 429–446 (2023). https://doi.org/10.1007/s12088-023-01121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01121-5

Keywords

Navigation