Skip to main content
Log in

The effects of Co/Ni-vacancy complex defects on the electronic and transport properties of armchair silicene nanoribbon

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the geometric structures, band structures and transport properties of the armchair silicene nanoribbon with or without vacancy defect and Co/Ni-vacancy complex defects have been investigated by using first-principles calculations. The calculated results show that the atoms near the defect appear the restructuring, and it can be found that the introduced defect can modulate the electronic properties of armchair silicene nanoribbon. The defective sub-bands are good for the electronic transport of armchair silicene nanoribbon with Co-vacancy complex defect but not good for armchair silicene nanoribbon with Ni-vacancy complex defect. Interestingly, the armchair silicene nanoribbon with Co-vacancy complex defect has negative differential conductance, which is in accordance with the total transmission of armchair silicene nanoribbon. It is suggested that the calculated results should be good for designing the electronic device based on armchair silicene nanoribbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva and A A Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. Sasha Stankovich, Dmitriy A Dikin, Geoffrey H B Dommett, Kevin M Kohlhaas, Eric J Zimney, Eric A Stach, Richard D Piner, SonBinh T Nguyen and Rodney S Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  3. K A Mkhoyan, A W Contryman, J Silcox, D A Stewart, GokiEda, C Mattevi, S Miller and M Chhowalla, Nano Lett. 7, 1888 (2007)

  4. K S Novoselov, Z Jiang, Y Zhang, S V Morozov, H L Stormer, U Zeitler, J C Maan, G S Boebinger, P Kim and A K Geim, Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  5. K S Novoselov, E McCann, S V Morozov, V I Fal’ko, M I Katsnelson, U Zeitler, D Jiang, F Schedin and A K Geim, Nature Phys. 2, 177 (2006)

    Article  ADS  Google Scholar 

  6. B Huang, Q M Yan, Z Li and W H Duan, Front. Phys. China 4, 269 (2009)

    Article  ADS  Google Scholar 

  7. Dan Zhang, Mengqiu Long, Xiaojiao Zhang, Jun Ouyang and Hui Xu, J. Appl. Phys. 121, 093903 (2017)

  8. Li-Ling Cui, Meng-qiu Long, Xiaojiao Zhang, Xin-Mei Li, Dan Zhang and Bing-Chu Yang, Phys. Lett. A 380, 730 (2016)

    Article  ADS  Google Scholar 

  9. Ren-Bin Gao, Xiao-Fang Peng, Xiang-Tao Jiang, Shi-Hua Tan and Meng-Qiu Long, Org. Electron. 67, 57 (2019)

    Article  Google Scholar 

  10. Zhi-Qiang Fan, Wei-Yu Sun, Xiang-Wei Jiang, Jun-Wei Luo and Shu-Shen Li, Org. Electron. 44, 20 (2017)

    Article  Google Scholar 

  11. Bowen Zeng, Mengqiu Long, Xiaojiao Zhang, Dong Yulan, Mingjun Li, Yougen Yi and Hai-Ming Duan, J. Phys. D 51, 235302 (2018)

    Article  ADS  Google Scholar 

  12. Tong Chen, Chengkun Guo, Quan Li, Liang Xu, Lingling Wang, Mengqiu Long and Cijun Shuai, J. Appl. Phys. 124, 215102 (2018)

    Article  ADS  Google Scholar 

  13. Zhi-Qiang Fan, Zhen-Hua Zhang and Shen-Yuan Yang, Nanoscale 12, 21750 (2020)

    Article  Google Scholar 

  14. Zhiyong Wang, Yayun Zhao, Mengyao Sun, Jianrong Xiao, Maowang Lu, Liu Wang, Yaping Zeng and Mengqiu Long, Solid State Commun. 240, 33 (2016)

    Article  ADS  Google Scholar 

  15. S Cahangirov, M Topsakal, E Aktürk, H Sahin and S Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  16. P Vogt, P De Padova, C Quaresima, J Avila, E Frantzeskakis, M C Asensio, A Resta, B Ealet and G Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

  17. A Fleurence, R Friedlein, T Ozaki, H Kawai, Y Wang and Y Yamada, Phys. Rev. Lett. 108, 245501 (2012)

    Article  ADS  Google Scholar 

  18. Li Tao, Eugenio Cinquanta, Daniele Chiappe, Carlo Grazianetti, Marco Fanciulli, Madan Dubey, Alessandro Molle and Deji Akinwande, Nature Nanotechnol. 10, 227 (2015)

    Article  ADS  Google Scholar 

  19. B Aufray, A Kara, S Vizzini, H Oughaddou, C Leandri, B Ealet and G Le Lay, Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  20. P De Padova, C Quaresima, B Olivieri, P Perfetti and G Le Lay, Appl. Phys. Lett. 98, 081909 (2011)

    Article  ADS  Google Scholar 

  21. P De Padova, C Quaresima, C Ottaviani, P M Sheverdyaeva, P Moras, C Carbone, D Topwal, B Olivieri, A Kara, H Oughaddou, B Aufray and G Le Lay, Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  22. W-F Tsai, C-Y Huang, T-R Chang, H Lin, H-T Jeng and A Bansi, Nat. Commun. 4, 1500 (2013)

    Article  ADS  Google Scholar 

  23. M Tahir, A Manchon, K Sabeeh, and U Schwingenschlögl, Appl. Phys. Lett. 102, 162412 (2013)

    Article  ADS  Google Scholar 

  24. Weitao Lu, Qingfeng Sun, Hongyu Tian, Benhu Zhou and Hongmei Liu, Phys. Rev. B 102, 125426 (2020)

    Article  ADS  Google Scholar 

  25. KaiJuan Pang, YaDong Wei, Xiaodong Xu, WeiQi Li, JianQun Yang, GuiLing Zhang, XingJi Li, Tao Ying and Yong Yuan Jiang, Phys. Chem. Chem. Phys. 22, 21412 (2020)

    Article  Google Scholar 

  26. Mostafa Khosravi, Hojat Allah Badehian and Mahboobeh Habibinejad, J. Kor. Phys. Soc. 77, 1183 (2020)

    Article  ADS  Google Scholar 

  27. Khalid Quertite, Hanna Enriquez, Nicolas Trcera, Yongfeng Tong, Azzedine Bendounan, Andrew J Mayne, Gérald Dujardin, Pierre Lagarde, Abdallah El kenz, Abdelilah Benyoussef, Yannick J Dappe, Abdelkader Kara and Hamid Oughaddou, Adv. Funct. Mater. 31, 2007013 (2021)

  28. Zhiyong Wang, Jingjin Chen, Shuai Yang, Jianrong Xiao and Mengqiu Long, Eur. Phys. J. B 92, 250 (2019)

    Article  ADS  Google Scholar 

  29. B G Wang, J Wang and H Guo, Phys. Rev. Lett. 82, 398 (1999)

    Article  ADS  Google Scholar 

  30. P Ordejón, E Artacho and J M Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  31. D Sánchez-Portal, P Ordejón, E Artacho and J M Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  32. J M Soler, E Artacho, J D Gale, A García, J Junquera, P Ordejón and D Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

  33. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  34. J Taylor, H Guo and J Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  35. D Jose and A Datta, Acc. Chem. Res. 47, 593 (2014)

    Article  Google Scholar 

  36. Rameswar Bhattacharjee, Tirthick Majumder and Ayan Datta, J. Comput. Chem. 40, 1488(2019)

    Article  Google Scholar 

  37. A A Farajian, K Esfarjani and Y Kawazoe, Phys. Rev. Lett. 82, 5084 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant No. 11564008), the Natural Science Foundation of Guangxi Province (Grant No. 2021GXNSFAA075014) and the Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi (Grant No. 2021KY0267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Xiao, J., Xu, L. et al. The effects of Co/Ni-vacancy complex defects on the electronic and transport properties of armchair silicene nanoribbon. Pramana - J Phys 96, 17 (2022). https://doi.org/10.1007/s12043-021-02261-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02261-3

Keywords

PACS Nos

Navigation