Skip to main content
Log in

Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we investigated the electronic and thermoelectric properties of a pristine armchair-edge silicene nanoribbon (PASiNR) and armchair-edge silicene nanoribbons (ASiNRs) defected by quantum antidot arrays, called defective armchair edge silicene nanoribbons (DASiNRs). We considered DASiNRs in which quantum antidot arrays with rhomboid and hexagonal geometries were created. The results indicate that the creation of quantum antidot arrays has a significant impact on the electronic properties of ASiNRs, so the modified band structure leads to significant modifications in the current-voltage characteristic that shows a negative differential resistance at lower bias voltages. Furthermore, due to the modified electronic band structures and transmission spectra, we found that the Seebeck coefficient and the electronic figure of merit, and consequently the thermoelectric performance of DASiNRs, especially with asymmetric rhomboid-type structures, is much higher than the PASiNR. We use a tight-binding model and non-equilibrium Green's function formalism to obtain the electronic and thermoelectric properties. All numerical studies and simulations were performed using MATLAB codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Venkateshalu, G. Subashini, P. Bhardwaj, G. Jacob, R. Sellappan, V. Raghavan, S. Jain, S. Pandiaraj, V. Natarajan, and B.A.M. Al Alwan, Phosphorene, antimonene, silicene and siloxene based novel 2D electrode materials for supercapacitors—a brief review. J. Energy Storage 48, 104027 (2022).

    Google Scholar 

  2. M. Ghosh and A. Datta, Pseudo-Jahn–Teller effects in two-dimensional silicene, germanene and stanene: a crystal orbital vibronic coupling density analysis. Bull. Mater. Sci. 41, 1 (2018).

    Google Scholar 

  3. F. Bechstedt, P. Gori, and O. Pulci, Beyond graphene: clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Prog. Surf. Sci. 96, 100615 (2021).

    CAS  Google Scholar 

  4. G.G. Naumis, Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures (Amsterdam: Elsevier, 2020).

    Google Scholar 

  5. M.A. Kharadi, G.F.A. Malik, F.A. Khanday, K.A. Shah, S. Mittal, and B.K. Kaushik, Silicene: from material to device applications. ECS J. Solid State Sci. Technol. 9, 115031 (2020).

    CAS  Google Scholar 

  6. Z. Meng, J. Zhuang, X. Xu, W. Hao, S.X. Dou, and Y. Du, Electronic band engineering in elemental 2D materials. Adv. Mater. Interfaces 5, 1800749 (2018).

    Google Scholar 

  7. A.H. Howlader, M.S. Islam, and N. Ferdous, Phonon transmission of vacancy disordered armchair silicene nanoribbon. OptoElectron. Lett. 17, 454 (2021).

    Google Scholar 

  8. S. Chowdhury and D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Prog. Phys. 79, 126501 (2016).

    Google Scholar 

  9. Y.L. Song, Y. Zhang, J.M. Zhang, and D.B. Lu, Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 256, 6313 (2010).

    CAS  Google Scholar 

  10. A.B. Chen, X.F. Wang, P. Vasilopoulos, M.X. Zhai, and Y.S. Liu, Spin-dependent ballistic transport properties and electronic structures of pristine and edge-doped zigzag silicene nanoribbons: large magnetoresistance. Phys. Chem. Chem. Phys. 16, 5113 (2014).

    CAS  Google Scholar 

  11. A. Kara, H. Enriquez, A.P. Seitsonen, L.L.Y. Voon, S. Vizzini, B. Aufray, and H. Oughaddou, A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67, 1 (2012).

    CAS  Google Scholar 

  12. Y.Y. Wang, R.G. Quhe, D.P. Yu, and J. Lü, Silicene spintronics—a concise review. Chin. Phys. B 24, 087201 (2015).

    Google Scholar 

  13. Q. Guo, N. Chen, and L. Qu, Two-dimensional materials of group-IVA boosting the development of energy storage and conversion. Carbon Energy 2, 54 (2020).

    Google Scholar 

  14. A. Voznyakovskii, A. Neverovskaya, A. Vozniakovskii, and S. Kidalov, A quantitative chemical method for determining the surface concentration of stone-wales defects for 1D and 2D carbon nanomaterials. Nanomaterials 12, 5 (2022).

    Google Scholar 

  15. J. Yin, Y. Wang, L. Bi, S. Ren, G. Yan, X. Huang, and Z. Yang, Boron nitride nanoribbons with single vacancy defects and doped with 3d transition metals: a first-principles study. Mater. Today Commun. 26, 101861 (2021).

    CAS  Google Scholar 

  16. J. Haskins, A. Kınacı, C. Sevik, H. Sevinçli, G. Cuniberti, and T. Çağın, Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5, 3779 (2011).

    CAS  Google Scholar 

  17. K. Ma, X. Yan, Y. Xiao, and Y. Chen, Electronic transport properties of metallic graphene nanoribbons with two vacancies. Solid State Commun. 150, 1308 (2010).

    CAS  Google Scholar 

  18. M.W. Chuan, K.L. Wong, A. Hamzah, N.E. Alias, C.S. Lim, and M.L.P. Tan, Electronic properties of zigzag silicene nanoribbons with single vacancy defect. Indones. J. Electr. Eng. Comput. Sci. 19, 77 (2020).

    Google Scholar 

  19. P. Dutta, S.K. Maiti, and S. Karmakar, Positional dependence of energy gap on line defect in armchair graphene nanoribbons: two-terminal transport and related issues. J. Appl. Phys. 114, 034306 (2013).

    Google Scholar 

  20. F. Wan, X. Wang, Y. Guo, J. Zhang, Z. Wen, and Y. Li, Role of line defect in the bandgap and transport properties of silicene nanoribbons. Phys. Rev. B 104, 195413 (2021).

    CAS  Google Scholar 

  21. S. Mehdi Aghaei and I. Calizo, Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes. J. Appl. Phys. 118, 104304 (2015).

    Google Scholar 

  22. A. Samipour, D. Dideban, and H. Heidari, Impact of an antidote vacancy on the electronic and transport properties of germanene nanoribbons: a first principles study. J. Phys. Chem. Solids 138, 109289 (2020).

    CAS  Google Scholar 

  23. B. Shojaeverdi and E. Zaminpayma, Influence of vacancy cluster on the electronic transport properties of silicene sheet. Phys. E 121, 114109 (2020).

    CAS  Google Scholar 

  24. M. Rezaei, H. Karbaschi, M. Amini, M. Soltani, and G. Rashedi, Thermoelectric properties of armchair phosphorene nanoribbons in the presence of vacancy-induced impurity band. Nanotechnology 32, 375704 (2021).

    CAS  Google Scholar 

  25. P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene. Phys. rev. lett. 102, 166808 (2009).

    Google Scholar 

  26. C. Núñez, M. Saiz-Bretín, P. Orellana, L. Rosales, and F. Domínguez-Adame, Tuning the thermoelectric response of silicene nanoribbons with vacancies. J. Phys.: Condens. Matter 32, 275301 (2020).

    Google Scholar 

  27. M. Barati, T. Vazifehshenas, T. Salavati-Fard, and M. Farmanbar, Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering. J. Phys.: Condens. Matter 30, 155307 (2018).

    CAS  Google Scholar 

  28. Y. Yan, Q.F. Liang, H. Zhao, C.Q. Wu, and B. Li, Thermoelectric properties of one-dimensional graphene antidot arrays. Phys. Lett. A 376, 2425 (2012).

    CAS  Google Scholar 

  29. H. Sadeghi, S. Sangtarash, and C.J. Lambert, Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein J. Nanotechnol. 6, 1176 (2015).

    CAS  Google Scholar 

  30. H. Sadeghi, S. Sangtarash, and C.J. Lambert, Enhanced thermoelectric efficiency of porous silicene nanoribbons. Sci. Rep. 6, 1176 (2015).

    CAS  Google Scholar 

  31. A. Darmawan, E. Suprayoga, A.R. Nugraha, and A.A. AlShaikhi, Thermoelectric properties of two-dimensional materials with combination of linear and nonlinear band structures. Mater. Today Commun. 33, 104596 (2022).

    CAS  Google Scholar 

  32. W. Liu, X. Shi, M. Hong, L. Yang, R. Moshwan, Z.G. Chen, and J. Zou, Ag doping induced abnormal lattice thermal conductivity in Cu 2 Se. J. Mater. Chem. C 6, 13225 (2018).

    CAS  Google Scholar 

  33. M.U. Sajid and H.M. Ali, Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Transf. 126, 211 (2018).

    CAS  Google Scholar 

  34. X. Xu, J. Chen, J. Zhou, and B. Li, Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30, 1705544 (2018).

    Google Scholar 

  35. G. Xie, D. Ding, and G. Zhang, Phonon coherence and its effect on thermal conductivity of nanostructures. Adv. Phys.: X 3, 1480417 (2018).

    Google Scholar 

  36. P. Mishra, D. Singh, Y. Sonvane, and R. Ahuja, Two-dimensional boron monochalcogenide monolayer for thermoelectric material. Sustain. Energy Fuels 4, 2363 (2020).

    CAS  Google Scholar 

  37. R. Mondal, N.B. Singh, J. Deb, S. Mukherjee, and U. Sarkar, Electronic and transport property of two-dimensional boron phosphide sheet. J. Mol. Gr. Modell. 112, 108117 (2022).

    CAS  Google Scholar 

  38. H. Qi, Z. Sun, N. Wang, G. Qin, H. Zhang, and C. Shen, Two-dimensional Al2I2Se2: a promising anisotropic thermoelectric material. J. Alloys Compd. 876, 160191 (2021).

    CAS  Google Scholar 

  39. D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, and H. Xie, Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 1 (2020).

    Google Scholar 

  40. Z.T. Esfahani, A. Saffarzadeh, and A. Akhound, A DFT study on the electronic and magnetic properties of triangular graphene antidot lattices. Eur. Phys. J. B 91, 1 (2018).

    CAS  Google Scholar 

  41. Z. Jokar and M.R. Moslemi, Effects of position and shape of atomic defects on the band gap of graphene nano ribbon superlattices. Int. J. Electron. Commun. Eng. 9, 162 (2015).

    Google Scholar 

  42. A. Samipour, D. Dideban, and H. Heidari, Impact of substitutional metallic dopants on the physical and electronic properties of germanene nanoribbons: a first principles study. Results Phys. 18, 103333 (2020).

    Google Scholar 

  43. R. Chegel and M. Hasani, Electronic and thermal properties of silicene nanoribbons: third nearest neighbor tight binding approximation. Chem. Phys. Lett. 761, 138061 (2020).

    CAS  Google Scholar 

  44. X. Chen, Z. Shi, B. Chen, S. Xiang, and G. Zhou, Sensitivity of helical edge states to line substitutional magnetic doping in zigzag silicene nanoribbons. Solid State Commun. 254, 42 (2017).

    CAS  Google Scholar 

  45. Y. Pei and H.B. Wu, Optimized geometry and electronic structure of graphyne-like silicyne nanoribbons. Chin. Phys. B 22, 057303 (2013).

    Google Scholar 

  46. T.N. Todorov, Tight-binding simulation of current-carrying nanostructures. J. Phys.: Condens. Matter 14, 3049 (2002).

    CAS  Google Scholar 

  47. V.T. Tran, J. Saint-Martin, P. Dollfus, and S. Volz, Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 7, 075212 (2017).

    Google Scholar 

  48. G. Klimeck and T. Boykin, Springer Handbook of Semiconductor Devices (Berlin: Springer, 2022).

    Google Scholar 

  49. L. Zhang, Symmetric and antisymmetric electric fields induced spin valves in a zigzag silicene nanoribbon ferromagnetic junction. J. Phys.: Condens. Matter 31, 495302 (2019).

    CAS  Google Scholar 

  50. E. Schrodinger, An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049 (1926).

    CAS  Google Scholar 

  51. K. Wong, M. Chuan, W. Chong, N. Alias, A. Hamzah, C. Lim, and M. Tan, Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures. Adv. Nano Res. 7, 209 (2019).

    Google Scholar 

  52. S.S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1997).

    Google Scholar 

  53. M.L. Sancho, J.L. Sancho, J.L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15, 851 (1985).

    Google Scholar 

  54. K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, and R. D’Agosta, Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89, 125403 (2014).

    Google Scholar 

  55. U. Sivan and Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33, 551 (1986).

    CAS  Google Scholar 

  56. L. Rosales, M. Pacheco, Z. Barticevic, A. León, A. Latgé, and P. Orellana, Transport properties of antidot superlattices of graphene nanoribbons. Phys. Rev. B 80, 073402 (2009).

    Google Scholar 

  57. X. Li, D. Zou, B. Cui, C. Fang, J. Zhao, D. Li, and D. Liu, Edge hydrogenation-induced spin-filtering and negative differential resistance effects in zigzag silicene nanoribbons with line defects. RSC Adv. 7, 25244 (2017).

    CAS  Google Scholar 

  58. R.L. An, X.F. Wang, P. Vasilopoulos, Y.S. Liu, A.B. Chen, Y.J. Dong, and M.X. Zhai, Vacancy effects on electric and thermoelectric properties of zigzag silicene nanoribbons. J. Phys. Chem. C 118, 21339 (2014).

    CAS  Google Scholar 

  59. Z. Gholami and F. Khoeini, Pure thermal spin current and perfect spin-filtering with negative differential thermoelectric resistance induced by proximity effect in graphene/silicene junctions. Sci. Rep. 11, 104 (2021).

    CAS  Google Scholar 

  60. Z. Gholami and F. Khoeini, Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures. Sci. Rep. 11, 15320 (2021).

    CAS  Google Scholar 

  61. L. Pan, H. Liu, X. Tan, H. Lv, J. Shi, X. Tang, and G. Zheng, Thermoelectric properties of armchair and zigzag silicene nanoribbons. Phys. Chem. Chem. Phys. 14, 13588 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ketabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalami, R., Ketabi, S.A. Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays. J. Electron. Mater. 52, 6566–6577 (2023). https://doi.org/10.1007/s11664-023-10578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10578-5

Keywords

Navigation