Skip to main content

Advertisement

Log in

Can species distribution models and molecular tools help unravel disjunct distribution of Rhododendron arboreum?

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The apparent absence of Himalayan low-elevation taxa in the central Indian region and resumption of their distribution in the high elevation of Western Ghats has puzzled biogeographers for several decades. Many theories have been proposed to explain this but attempts remain futile owing to insufficient empirical support. Here, we have employed a montane tree species, Rhododendron arboreum to investigate this pattern by integrating past ecological niche modelling with molecular signatures. Reconstruction of paleo-ecological niche from interglacial to Last Glacial Maxima (LGM) portrayed a gradual depletion of vegetation cover with extreme impoverishment in the Holocene. A similar pattern was also reflected from genetic signatures; population history revealed a very recent split between the Himalayas and Western Ghats in the late Quaternary. A few other tree species exhibiting the same disjunction demonstrated a similar modification of paleo-ecological niche from last interglacial. The study clearly indicated that the populations in the Western Ghats to be a relictual remnants of a once continuous distribution of R. arboreum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abdulali H. 1949 Some peculiarities of avifaunal distribution in peninsular India. Proc. Natl. Inst. Sci. India 15, 387–393.

    Google Scholar 

  • Ali S. 1935 The ornithology of Travancore and Cochin. J. Bombay Nat. Hist. Soc. 37, 814–843.

    Google Scholar 

  • Apte G. S., Bahulikar R. A., Kulkarni R. S., Lagu M. D., Kulkarni B. G., Suresh H. S. et al. 2006 Genetic diversity analysis in Gaultheria fragrantissima Wall. (Ericaceae) from the two biodiversity hotspots in India using ISSR markers. Curr. Sci. 91, 1634–1640.

    CAS  Google Scholar 

  • Bahulikar R. A., Lagu M. D., Kulkarni B. G., Pandit S. S., Suresh H. S., Rao M. K. V. et al. 2004 Genetic diversity among spatially isolated populations of Eurya nitida Korth. (Theaceae) based on inter-simple sequence repeats. Curr. Sci. 86, 824–831.

    CAS  Google Scholar 

  • Banu S., Lagu M. D. and Gupta V. S. 2010 Phylogeographical studies in disjunct populations of Symplocos laurina Wall. using cytoplasmic PCR-RFLP approach. Tree Genet. Genomes 6, 13–23.

    Article  Google Scholar 

  • Bandelt H. J., Forster P. and Rohl A. 1999 Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.

    Article  CAS  Google Scholar 

  • Barnosky A. D. 2005 Effects of Quaternary climatic change on speciation in mammals. J. Mamm. Evol. 12, 247–264.

    Article  Google Scholar 

  • Bossuyt F. and Milinkovitch M. 2000 Convergent adaptive radiation in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl. Acad. Sci. USA 97, 6585–6590.

    Article  CAS  Google Scholar 

  • Choudhary S., Thakur S., Saini R. G. and Bhardwaj P. 2014 Development and characterization of genomic microsatellite markers in Rhododendron arboreum. Conser. Genet. Resour. 6, 937–940.

    Article  Google Scholar 

  • Cornuet J. M., Pudlo P., Veyssier J., Dehne-Garcia A., Gautier M., Leblois R. et al. 2014 DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189.

    Article  CAS  Google Scholar 

  • Daniels R. J. R. 2001 Endemic fishes of the Western Ghats and the Satpura hypothesis. Curr. Sci. 81, 240–244.

    Google Scholar 

  • Das I. 1996 Biogeography of the reptiles of South Asia, pp. 87. Krieger Publishing Company, Malabar.

  • Dilger W. C. 1952 The Brij hypothesis as an explanation for the tropical faunal similarities between the Western Ghats and the eastern Himalayas, Assam, Burma, and Malaya. Evolution 67, 125–127.

    Article  Google Scholar 

  • Doyle J. J. and Doyle J. L. 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

    Google Scholar 

  • Duchesne P. and Turgeon J. 2009 FLOCK: a method for quick mapping of admixture without source samples. Mol. Ecol. Resour. 9, 1333–1344.

    Article  CAS  Google Scholar 

  • Excoffier L. and Lischer H. E. L. 2010 Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567.

    Article  Google Scholar 

  • Gower D. J., Agarwal I., Karanth K. P., Datta-Roy A., Giri V. B., Wilkinson M. and San M. D. 2016 The role of wet-zone fragmentation in shaping biodiversity patterns in peninsular India: insights from the caecilian amphibian Gegeneophis. J. Biogeogr. 43, 1091–1102.

    Article  Google Scholar 

  • Hewitt G. M. 2004 Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. Biol. Sci. 359, 183–195.

    Article  CAS  Google Scholar 

  • Honda M., Ota H., Kobayashi M., Nabhitabhata J., Yong H.-S. and Hikida T. 1999 Phylogenetic relationships of the flying lizard’s genus Draco (Reptilia, Agamidae). Zool. Sci. 16, 535–549.

    Article  CAS  Google Scholar 

  • Hora S. L. 1949 Satpura hypothesis of the distribution of the Malayan fauna and flora to Peninsular India. Proc. Num. Acad. Sci. India B 15, 309–314.

    Google Scholar 

  • Jacquemyn H., Vandepitte K., Roldán-Ruiz I. and Honnay O. 2009 Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization. Ann. Bot. 103, 777–783.

    Article  CAS  Google Scholar 

  • Jain A., Pandit M. K., Elahi S., Jain A., Bhaskar A. and Kumar V. 2000 Reproductive behaviour and genetic variability in geographically isolated populations of Rhododendron arboreum (Ericaceae). Curr. Sci. 79, 1377–1381.

    Google Scholar 

  • Karanth P. K. 2000 Molecular systematics and phylogeography of the langurs of Asia. Ph. D. thesis, University at Albany, Albany.

  • Karanth P. K. 2003 Evolution of disjunct distributions among wet-zone species of the Indian subcontinent: testing various hypotheses using a phylogenetic approach. Curr. Sci. 85, 1276–1283.

    Google Scholar 

  • Kuttapetty M., Pillai P., Varghese R. and Seeni S. 2014 Genetic diversity analysis in disjunct populations of Rhododendron arboreum from the temperate and tropical forests of Indian subcontinent corroborate Satpura hypothesis of species migration. Biologia 69, 311–322.

    Article  Google Scholar 

  • Mani M. S. 1974 Biogeographical evolution in India. In Ecology and biogeography of India (ed. M. S. Mani), pp. 698–724. Dr W. Junk Publishers, Hague, The Netherlands.

    Chapter  Google Scholar 

  • Librado P. and Rozas J. 2009 DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    Article  CAS  Google Scholar 

  • Mairal M., Pokorny L., Aldasoro J. J., Alarcon M. and Sanmartin I. 2015 Ancient vicariance and climate-driven extinction explain continental-wide disjunctions in Africa: the case of the Rand Flora genus Canarina (Campanulaceae). Mol. Ecol. 24, 1335–1354.

    Article  CAS  Google Scholar 

  • Meher-Homji V. M. 1983 On the Indo-Malaysian and Indo-African elements in India. Feddes Repert. 94, 407–424.

    Google Scholar 

  • Meirmans P. G. and Van Tienderen P. H. 2004 GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Resour. 4, 792–794.

    Article  Google Scholar 

  • Menon A. G. K. 1980 The Satpura hypothesis. Proc. Num. Acad. Sci. India B 46, 27–32.

    Google Scholar 

  • Okaura T. and Harada K. 2002 Phylogeographical structure revealed by chloroplast DNA variation in Japanese beech (Fagus crenata Blume). Heredity 88, 322–329.

    Article  CAS  Google Scholar 

  • Pannell J. R. and Charlesworth B. 2000 Effects of metapopulation processes on measures of genetic diversity. Philos. Trans. R. Soc. B 355, 1851–1864.

    Article  CAS  Google Scholar 

  • Ponton C., Giosan L., Eglinton T. I., Fuller D. Q., Johnson J. E., Kumar P. and Collett T. S. 2012 Holocene aridification of India. Geophys. Res. Lett. 39, 1–6.

  • Pound M. J., Haywood A. M., Salzmann U. and Riding J. B. 2012 Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth-Sci. Rev. 112, 1–22.

    Article  Google Scholar 

  • Rajagopalan G., Sukumar R., Ramesh R. and Pant R. K. 1997 Late Quaternary vegetational and climatic changes from tropical peats in southern India-An extended record up to 40,000 years BP. Curr. Sci. 73, 60–63.

    Google Scholar 

  • Raven P. H. and Axelrod D. I. 1972 Plate tectonics and Australasian Paleobiogeography. Science 176, 1379–1386.

    Article  CAS  Google Scholar 

  • Renner S. 2004 Plant dispersal across the tropical Atlantic by wind and sea currents. Int. J. Plant. Sci. 165, S23–S33.

    Article  Google Scholar 

  • Ripley D. and Beehler B. 1990 Patterns of speciation in Indian birds. J. Biogeogr. 17, 639–648.

    Article  Google Scholar 

  • Sukumar R., Ramesh R., Pant R. K. and Rajagopalan G. 1993 A Delta13C record of late Quaternary climate change from tropical peats in southern India. Nature 364, 703–706.

    Article  CAS  Google Scholar 

  • Ripley D., Beehler B. and Raju K. 1986 Birds of the Visakhapatnam Ghats, Andhra Pradesh. J. Bombay Nat. Hist. Soc. 84, 540–558.

    Google Scholar 

  • Wiens J. J. and Donoghue M. J. 2004 Historical biogeography, ecology and species richness. Trends. Ecol. Evol. 19, 639–644.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Simpee Kumari for her assistance in laboratory work; Karma, Sunil Dahal, other ATREE staffs in Gangtok, Sikkim for assistance in logistics; and Sikkim Forest Department for permitting collection of specimens. AR acknowledges the funding received from Science and Engineering Research Board (SERB), Govt. of India (SB/FT/LS-250/2012), and International Association of Plant Taxonomists (IAPT) and GR acknowledges the funding received from DBT (BT/PR24822/NER/95/863/2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avik Ray or G. Ravikanth.

Additional information

Corresponding editor: H. A. Ranganath

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 748 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Ray, R., Saggere, R.M. et al. Can species distribution models and molecular tools help unravel disjunct distribution of Rhododendron arboreum?. J Genet 100, 18 (2021). https://doi.org/10.1007/s12041-021-01270-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01270-w

Keywords

Navigation