Skip to main content
Log in

A multi-branched triphenylamine Schiff base derivative for picric acid turn-on detection

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Developing fluorescence probes with a turn-on model for picric acid (PA) detection is a challenge due to its fluorescence quenching property. In this work, a novel multi-branched triphenylamine Schiff base derivative (TPAS) was designed, synthesized, and characterized. TPAS performed well in PA detection, exhibiting weak emission in organic solvents and aqueous environments. However, bright fluorescence was observed in the aqueous solution of TPAS after adding PA. Moreover, the response of TPAS to PA was not affected by the other nitroaromatic compounds and had a limit of detection of 43 nM, which was lower than most of the reported PA probes. According to the mechanism study, the increased fluorescence was caused by the PA-induced hydrolysis of the Schiff base to the highly emissive amino precursor. This work provides new insights into designing novel PA probes with a turn-on model.

Graphical abstract

A novel multi-branched triphenylamine Schiff base derivative (TPAS) was used for picric acid turn-on sensing with a lower limit of detection by inducing the hydrolysis of the Schiff base to the highly emissive amino precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kgatitsoe M M, Ncube S, Tutu H, Nyambe I A and Chimuka L 2019 Synthesis and characterization of a magnetic nanosorbent modified with Moringa oleifera leaf extracts for removal of nitroaromatic explosive compounds in water samples J. Environ. Chem. Eng. 7 103128

    Article  CAS  Google Scholar 

  2. Verbitskiy E V, Rusinov G L, Chupakhin O N and Charushin V N 2020 Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review Dyes Pigm. 180 108414

    Article  CAS  Google Scholar 

  3. Wang G, Li M, Wei Q, Xiong Y, Li J, Li Z, et al. 2021 Design of an AIE-active flexible self-assembled monolayer probe for trace nitroaromatic compound explosive detection ACS Sens. 6 1849

    Article  CAS  PubMed  Google Scholar 

  4. Li B, Li R, Gao J, Wang W, Lu J, Zheng F and Guo G 2022 Barium-based coordination polymer: A bi-functional fluorescent sensor for Fe3+ and nitroaromatic molecular detection Inorg. Chem. Commun. 137 109227

    Article  CAS  Google Scholar 

  5. Dasary S S R, Singh A K, Lee K S, Yu H and Ray P C 2018 A miniaturized fiber-optic fluorescence analyzer for detection of Picric acid explosive from commercial and environmental samples Sens. Actuat. B 255 1646

    Article  CAS  Google Scholar 

  6. Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, et al. 2009 Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil J. Hazard. Mater. 163 1199

    Article  CAS  PubMed  Google Scholar 

  7. Song Y, Pang X, Chen J, Lu Y, Xie J and Ye Y 2020 Determination of picric acid using micro CdS crystal-modified glassy carbon electrode Int. J. Environ. Anal. Chem. 100 957

    Article  CAS  Google Scholar 

  8. Mahyari M 2016 Electrochemical determination of picric acid based on platinum nanoparticles–reduced graphene oxide composite Int. J. Environ. Anal. Chem. 96 1455

    Article  CAS  Google Scholar 

  9. Zhong F, Wu Z, Guo J and Jia D 2018 Porous silicon photonic crystals coated with Ag nanoparticles as efficient substrates for detecting trace explosives using SERS Nanomater. 8 872

    Article  Google Scholar 

  10. Novotný F, Plutnar J and Pumera M 2019 Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced raman scattering Adv. Funct. Mater. 29 1903041

    Article  Google Scholar 

  11. Burdel M, Sandrejova J, Balogh I S, Vishnikin A and Andruch V 2013 A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid J. Sep. Sci. 36 932

    Article  CAS  PubMed  Google Scholar 

  12. Kauppila T J, Flink A, Pukkila J and Ketola R A 2016 Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry Rapid Commun. Mass Spectrom. 30 467

    Article  CAS  PubMed  Google Scholar 

  13. Longo C M and Musah R A 2020 MALDI-mass spectrometry imaging for touch chemistry biometric analysis: Establishment of exposure to nitroaromatic explosives through chemical imaging of latent fingermarks Forensic Chem. 20 100269

    Article  CAS  Google Scholar 

  14. Parvathy P A, Dheepika R, Abhijnakrishna R, Imran P K M and Nagarajan S 2020 Fluorescence quenching of triarylamine functionalized phenanthro-line-based probe for detection of picric acid J. Photochem. Photobiol., A 401 112780

    Article  CAS  Google Scholar 

  15. Remani K C and Binitha N N 2022 Fluorescence sensing of picric acid by ceria nanostructures prepared using fenugreek extract J. Iran. Chem. Soc. 19 619

    Article  CAS  Google Scholar 

  16. Jiang B, Liu W, Liu S and Liu W S 2021 Coumarin-encapsulated MOF luminescence sensor for detection of picric acid in water environment Dyes Pigm. 184 108794

    Article  CAS  Google Scholar 

  17. Hou Y, Li S, Zhang Z, Chen L and Zhang M 2020 A fluorescent platinum(ii) metallacycle-cored supramolecular network formed by dynamic covalent bonds and its application in halogen ions and picric acid detection Polym. Chem. 11 254

    Article  CAS  Google Scholar 

  18. Guo R X, Wang G, Liu X G, Yang XS, Liu W S and Liu W 2022 A novel acylhydrazone Zn coordination polymer for the determination of picric acid J. Solid State Chem. 312 123234

    Article  CAS  Google Scholar 

  19. Nailwal Y, Devi M and Pal S K 2022 Luminescent conjugated microporous polymers for selective sensing and ultrafast detection of picric acid ACS Appl. Polym. Mater. 4 2648

    Article  CAS  Google Scholar 

  20. Yu H, Liu Q, Fan M, Sun J, Su Z, Li X and Wang X 2022 Novel Eu-MOF-based mixed matrix membranes and 1D Eu-MOF-based ratiometric fluorescent sensor for the detection of metronidazole and PA in water Dyes Pigm. 197 109812

    Article  CAS  Google Scholar 

  21. Ju P, Yang H, Jiang L, Li M, Yu Y and Zhang E 2021 A novel high sensitive Cd-MOF fluorescent probe for acetone vapor in air and picric acid in water: synthesis, structure and sensing properties Spectrochim. Acta A Mol. Biomol. Spectrosc. 246 118962

    Article  CAS  PubMed  Google Scholar 

  22. Kaur M, Yusuf M, Tsang Y F, Kim K H and Malikand A K 2023 Amine/hydrazone functionalized Cd(II)/Zn(II) metal-organic framework for ultrafast sensitive detection of hazardous 2,4,6-trinitrophenol in water Sci. Total Environ. 857 159385

    Article  CAS  PubMed  Google Scholar 

  23. Mukherjee D, Das P, Kundu S and Mandal B 2022 Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid Chemosphere 300 134432

    Article  CAS  PubMed  Google Scholar 

  24. Keerthana P, Cherian A R, Sirimahachai U, Varghese A and Hegde G 2022 Detection of picric acid in industrial effluents using multifunctional green fluorescent B/N-carbon quantum dots J. Environ. Chem. Eng. 10 107209

    Article  Google Scholar 

  25. Zhang G B, Zhang S S, Chen F J, Ni Y Y, Wang C Y, Yang L M, et al. 2022 Novel AIE-active tetraphenylethylene derivatives as multitask smart materials for turn-on mechanofluorochromism, quantitative sensing of pressure and picric acid detection Dyes Pigm. 203 110327

    Article  CAS  Google Scholar 

  26. Dey B, Pahari P, Sahoo S K and Atta A K 2023 Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips J. Photochem. Photobiol., A 440 114647

    Article  CAS  Google Scholar 

  27. Thippeswamy M S, Naik L, Maridevarmath C V, Savanur H M and Malimath G H 2022 Studies on the characterisation of thiophene substituted 1, 3, 4-oxadiazole derivative for the highly selective and sensitive detection of picric acid J. Mol. Struct. 1264 133274

    Article  CAS  Google Scholar 

  28. Waseem M T, Junaid H M, Gul H, Khan Z A, Yu C and Shahzad S A 2022 Fluorene based fluorescent and colorimetric sensors for ultrasensitive detection of nitroaromatics in aqueous medium J. Photochem. Photobiol., A 425 113660

    Article  Google Scholar 

  29. Leslee D B C and Karuppannan S 2022 Unique carbazole-N, N-dimethylanline linked chalcone a colorimetric and fluorescent probe for picric acid explosive and its test strip analysis J. Photochem. Photobiol., A 429 113937

    Article  Google Scholar 

  30. Harmalkar S S, Naik A V, Nilajakar M K and Dhuri S N 2020 Chemoselective detection of 2, 4, 6-trinitrophenol by ground state adduct formation via protonation of quinoline moiety of non-heme ligands with structural evidence ChemistrySelect 5 8447

    Article  CAS  Google Scholar 

  31. Jana P, Yadav M, Kumar T and Kanvah S 2021 Benzimidazole-acrylonitriles as chemosensors for picric acid detection J. Photochem. Photobiol., A 404 112874

    Article  CAS  Google Scholar 

  32. Mishra A, Dheepika R, Parvathy P A, Imran P M, Bhuvanesh N S P and Nagarajan S 2021 Fluorescence quenching based detection of nitroaromatics using luminescent triphenylamine carboxylic acids Sci. Rep. 11 19324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Venkatappa L, Ture S A, Yelamaggad C V, Sundaram V N N, Martinez-Manez R and Abbaraju V 2020 Mechanistic insight into the turn-off sensing of nitroaromatic compounds employing functionalized polyaniline ChemistrySelect 5 6321

    Article  CAS  Google Scholar 

  34. Liu C, Wu Y, Han N and Qiu J 2011 Efficient synthesis of 4-heteroaryl-substituted triphenylamine derivatives via a ligand-free Suzuki reaction Appl. Organomet. Chem. 25 862

    Article  CAS  Google Scholar 

  35. Lee C, Yang W and Parr R G 1988 Development of the colle-salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  36. Miehlich B, Savin A, Stoll H and Preuss H 1989 Results obtained with the correlation energy functionals of becke and Lee, Yang and Parr Chem. Phys. Lett. 157 200

    Article  CAS  Google Scholar 

  37. Becke A D 1993 Density-functional thermochemistry. III. the role of exact exchange J. Phys. Chem. 98 5648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61905110). The Fundamental Research Funds for the Universities of Henan Province (NSFRF210420). Key Research Project of Henan Province (202102210225). Innovation and entrepreneurship training program for college students (202210460001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaobin Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 694 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Ji, Q., Yan, J. et al. A multi-branched triphenylamine Schiff base derivative for picric acid turn-on detection. J Chem Sci 135, 45 (2023). https://doi.org/10.1007/s12039-023-02164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02164-3

Keywords

Navigation