Skip to main content
Log in

Rutin Attenuates Gentamycin-induced Hair Cell Injury in the Zebrafish Lateral Line via Suppressing STAT1

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aminoglycoside antibiotics, including gentamicin (GM), induce delayed ototoxic effects such as hearing loss after prolonged use, which results from the death of hair cells. However, the mechanisms underlying the ototoxicity of aminoglycosides warrant further investigation, and there are currently no effective drugs in the clinical setting. Herein, the therapeutic effect of the flavonoid compound rutin against the ototoxic effects of GM in zebrafish hair cells was investigated. Animals incubated with rutin (100–400 µmol/L) were protected against the pernicious effects of GM (200 µmol/L). We found that rutin improves hearing behavior in zebrafish, and rutin was effective in reducing the number of Tunel-positive cells in the neuromasts of the zebrafish lateral line and promoting cell proliferation after exposure to GM. Subsequently, rutin exerted a protective effect against GM-induced cell death in HEI-OC1 cells and could limit the production of cytosolic reactive oxygen species (ROS) and diminish the percentage of apoptotic cells. Additionally, the results of the proteomic analysis revealed that rutin could effectively inhibit the expression of necroptosis and apoptosis related genes. Meanwhile, molecular docking analysis revealed a high linking activity between the molecular docking of rutin and STAT1 proteins. The protection of zebrafish hair cells or HEI-OC1 cells from GM-induced ototoxicity by rutin was attenuated by the introduction of STAT1 activator. Finally, we demonstrated that rutin significantly improves the bacteriostatic effect of GM by in vitro experiments, emphasising its clinical application value. In summary, these results collectively unravel a novel therapeutic role for rutin as an otoprotective drug against the adverse effects of GM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Selimoglu E (2007) Aminoglycoside-induced ototoxicity. Curr Pharm Des 13(1):119–126. https://doi.org/10.2174/138161207779313731

    Article  CAS  PubMed  Google Scholar 

  2. Steyger PS (2021) Mechanisms of Ototoxicity and Otoprotection. Otolaryngol Clin North Am 54(6):1101–1115. https://doi.org/10.1016/j.otc.2021.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kros CJ, Steyger PS (2019) Aminoglycoside- and Cisplatin-Induced Ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med 9(11):a033548. https://doi.org/10.1101/cshperspect.a033548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wargo KA, Edwards JD (2014) Aminoglycoside-induced nephrotoxicity. J Pharm Pract 27(6):573–577. https://doi.org/10.1177/0897190014546836

    Article  PubMed  Google Scholar 

  5. Lanvers-Kaminsky C, Ciarimboli G (2017) Pharmacogenetics of drug-induced ototoxicity caused by aminoglycosides and cisplatin. Pharmacogenomics 18(18):1683–1695. https://doi.org/10.2217/pgs-2017-0125

    Article  CAS  PubMed  Google Scholar 

  6. Steyger PS (2021) Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am J Audiol 30(3S):887–900. https://doi.org/10.1044/2021_AJA-21-00006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zong Y, Chen F, Li S, Zhang H (2021) (-)-Epigallocatechin-3-gallate (EGCG) prevents aminoglycosides-induced ototoxicity via anti-oxidative and anti-apoptotic pathways. Int J Pediatr Otorhinolaryngol 150:110920. https://doi.org/10.1016/j.ijporl.2021.110920

    Article  PubMed  Google Scholar 

  8. Ghorbani A (2017) Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 96:305–312. https://doi.org/10.1016/j.biopha.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  9. Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, Khezri K, Jafari S, Ahmadian E et al (2021) Therapeutic benefits of rutin and its nanoformulations. Phytother Res 35(4):1719–1738. https://doi.org/10.1002/ptr.6904

    Article  CAS  PubMed  Google Scholar 

  10. Kamalakkannan N, Stanely Mainzen Prince P (2006) Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol Cell Biochem 293(1–2):211–219. https://doi.org/10.1007/s11010-006-9244-1

    Article  CAS  PubMed  Google Scholar 

  11. Nafees S, Rashid S, Ali N, Hasan SK, Sultana S (2015) Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: role of NFκB/MAPK pathway. Chem Biol Interact 231:98–107. https://doi.org/10.1016/j.cbi.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  12. Zheng S, Liu C, Tang D, Zheng Z, Yan R, Wu C, Zuo N, Ma J et al (2022) The protective effect of rutin against the cisplatin-induced cochlear damage in vitro. Neurotoxicology 90:102–111. https://doi.org/10.1016/j.neuro.2022.03.005

    Article  CAS  PubMed  Google Scholar 

  13. Chitnis AB, Nogare DD, Matsuda M (2012) Building the posterior lateral line system in zebrafish. Dev Neurobiol 72(3):234–255. https://doi.org/10.1002/dneu.20962

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park MK, Lee BD, Chae SW, Chi J, Kwon SK, Song JJ (2012) Protective effect of NecroX, a novel necroptosis inhibitor, on gentamicin-induced ototoxicity. Int J Pediatr Otorhinolaryngol 76(9):1265–1269. https://doi.org/10.1016/j.ijporl.2012.05.016

    Article  PubMed  Google Scholar 

  15. Tripathi S, Parmar D, Fathima S, Raval S, Singh G (2023) Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced oxidative stress and DNA damage by stimulating Nrf2/HO-1 pathway in the experimental model. Biol Trace Elem Res 201(5):2427–2441. https://doi.org/10.1007/s12011-022-03358-5

    Article  CAS  PubMed  Google Scholar 

  16. Stolzer I, Schickedanz L, Chiriac MT, López-Posadas R, Grassl GA, Mattner J, Wirtz S, Winner B et al (2022) STAT1 coordinates intestinal epithelial cell death during gastrointestinal infection upstream of Caspase-8. Mucosal Immunol 15(1):130–142. https://doi.org/10.1038/s41385-021-00450-2

    Article  CAS  PubMed  Google Scholar 

  17. Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21(18):7013–7025. https://doi.org/10.1523/JNEUROSCI.21-18-07013.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baek S, Tran NTT, Diaz DC, Tsai YY, Acedo JN, Lush ME, Piotrowski T (2022) Single-cell transcriptome analysis reveals three sequential phases of gene expression during zebrafish sensory hair cell regeneration. Dev Cell 57(6):799–819e6. https://doi.org/10.1016/j.devcel.2022.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nicolson T (2017) The genetics of hair-cell function in zebrafish. J Neurogenet 31(3):102–112. https://doi.org/10.1080/01677063.2017.1342246

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kniss JS, Jiang L, Piotrowski T (2016) Insights into sensory hair cell regeneration from the zebrafish lateral line. Curr Opin Genet Dev 40:32–40. https://doi.org/10.1016/j.gde.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  21. Pittman JT, Lott CS (2014) Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors. Physiol Behav 17:123:174–179. https://doi.org/10.1016/j.physbeh.2013.10.023

    Article  CAS  Google Scholar 

  22. Zheng Z, Tang D, Zhao L, Li W, Han J, Hu B, Nie G, He Y (2020) Liproxstatin-1 protects Hair Cell-Like HEI-OC1 cells and cochlear hair cells against Neomycin Ototoxicity. Oxid Med Cell Longev 2020:1782659. https://doi.org/10.1155/2020/1782659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivanov M, Novović K, Malešević M, Dinić M, Stojković D, Jovčić B, Soković M (2022) Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence. Pharmaceuticals (Basel) 15(3):385. https://doi.org/10.3390/ph15030385

    Article  CAS  PubMed  Google Scholar 

  24. Tabolacci E, Tringali G, Nobile V, Duca S, Pizzoferrato M, Bottoni P, Clementi ME (2023) Rutin protects fibroblasts from UVA Radiation through Stimulation of Nrf2 pathway. Antioxid (Basel) 12(4):820. https://doi.org/10.3390/antiox12040820

    Article  CAS  Google Scholar 

  25. Shu Y, Li W, Huang M, Quan YZ, Scheffer D, Tian C, Tao Y, Liu X et al (2019) Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nat Commun 10(1):5530. https://doi.org/10.1038/s41467-019-13157-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He ZH, Li M, Fang QJ, Liao FL, Zou SY, Wu X, Sun HY, Zhao XY et al (2021) FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 17(12):4341–4362. https://doi.org/10.1080/15548627.2021.1916194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He Z, Guo L, Shu Y, Fang Q, Zhou H, Liu Y, Liu D, Lu L et al (2017) Autophagy protects auditory hair cells against neomycin-induced damage. Autophagy 13(11):1884–1904. https://doi.org/10.1080/15548627.2017.1359449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruhl D, Du TT, Wagner EL, Choi JH, Li S, Reed R, Kim K, Freeman M et al (2019) Necroptosis and apoptosis contribute to Cisplatin and Aminoglycoside Ototoxicity. J Neurosc 39(15):2951–2964. https://doi.org/10.1523/JNEUROSCI.1384-18.2019

    Article  Google Scholar 

  29. Gitika B, Sai Ram M, Sharma SK, Ilavazhagan G, Banerjee PK (2006) Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic Res 40(1):95–102. https://doi.org/10.1080/10715760500335447

    Article  CAS  PubMed  Google Scholar 

  30. Singh G, Thaker R, Sharma A, Parmar D (2021) Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice. Environ Sci Pollut Res Int 28(16):20517–20536. https://doi.org/10.1007/s11356-020-11740-w

    Article  CAS  PubMed  Google Scholar 

  31. Tripathi S, Fhatima S, Parmar D, Singh DP, Mishra S, Mishra R, Singh G (2022) Therapeutic effects of CoenzymeQ10, biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain. 3 Biotech 12(5):116. https://doi.org/10.1007/s13205-022-03171-w

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim HS, Lee MS (2007) STAT1 as a key modulator of cell death. Cell Signal 19(3):454–465. https://doi.org/10.1016/j.cellsig.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  33. Wei TT, Zhang MY, Zheng XH, Xie TH, Wang W, Zou J, Li Y, Li HY et al (2022) Interferon-γ induces retinal pigment epithelial cell ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in Age-related Macular Degeneration. FEBS J 289(7):1968–1983. https://doi.org/10.1111/febs.16272

    Article  CAS  PubMed  Google Scholar 

  34. Murata H, Yasui Y, Oiso K, Ochi T, Tomonobu N, Yamamoto KI, Kinoshita R, Sakaguchi M (2023) STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD+-biosynthetic and consuming enzymes. Cell Signal 108:110717. https://doi.org/10.1016/j.cellsig.2023.110717

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt NC, Rubel EW, Nathanson NM (2009) Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. J Neurosci 29(12):3843–3851. https://doi.org/10.1523/JNEUROSCI.5842-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang QX, He XJ, Wong HC (2016) Kindt KS (2016) Functional calcium imaging in zebrafish lateral-line hair cells. Methods Cell Biol. 133:229–52. https://doi.org/10.1016/bs.mcb.2015.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barta CL, Liu H, Chen L, Giffen KP, Li Y, Kramer KL, Beisel KW, He DZ (2018) RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells. Sci Data 5:180005. https://doi.org/10.1038/sdata.2018.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hung GY, Wu CL, Chou YL, Chien CT, Horng JL, Lin LY (2019) Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos. Aquat Toxicol 209:168–177. https://doi.org/10.1016/j.aquatox.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  39. Li M, Liu J, Liu D, Duan X, Zhang Q, Wang D, Zheng Q, Bai X et al (2021) Naringin attenuates cisplatin- and aminoglycoside-induced hair cell injury in the zebrafish lateral line via multiple pathways. J Cell Mol Med 25(2):975–989. https://doi.org/10.1111/jcmm.16158

    Article  CAS  PubMed  Google Scholar 

  40. Li M, Zhao J, Tang Q, Zhang Q, Wang Y, Zhang J, Hao Y, Bai X et al (2021) Lamivudine improves cognitive decline in SAMP8 mice: integrating in vivo pharmacological evaluation and network pharmacology. J Cell Mol Med 25(17):8490–8503. https://doi.org/10.1111/jcmm.16811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li M, Zhang J, Chen W, Liu S, Liu X, Ning Y, Cao Y, Zhao Y (2023) Supraphysiologic doses of 17β-estradiol aggravate depression-like behaviors in ovariectomized mice possibly via regulating microglial responses and brain glycerophospholipid metabolism. J Neuroinflammation 20(1):204. https://doi.org/10.1186/s12974-023-02889-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Qingdao Medical and Health Research guidance Project (2022-WJZD107) and the National Natural Science Foundation of China (Nos. 82000979).

Funding

This research was funded by the Qingdao Medical and Health Research guidance Project (2022-WJZD107) and the National Natural Science Foundation of China (Nos. 82000979).

Author information

Authors and Affiliations

Authors

Contributions

HY and RY designed the experiments; HY performed the animal experiments; TZ, JL, and DW performed the experiments; KG, HY and WZ analyzed the data, reviewed the data, advised the study, and interpreted the analyzed data; HY and TX wrote the manuscript. The manuscript has been revised and approved by all authors.

Corresponding authors

Correspondence to Tong Xu or Rong Yang.

Ethics declarations

Ethics Approval

This study was approved by the Animal Ethics Committee (No.20,230,506) of Shandong Provincial Hospital (Jinan, China).

Consent to Participate

Not applicable.

Consent for publication

All authors have read and approve the manuscript and consent to its publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zong, T., Liu, J. et al. Rutin Attenuates Gentamycin-induced Hair Cell Injury in the Zebrafish Lateral Line via Suppressing STAT1. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04179-4

Keywords

Navigation