Skip to main content

Advertisement

Log in

Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one’s ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual’s physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain’s neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body–brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Fisher GG, Chacon M, Chaffee DS (2019) Theories of cognitive aging and work. Work across the lifespan. Elsevier, pp. 17–45

    Book  Google Scholar 

  2. Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103(3):403–428

    Article  PubMed  CAS  Google Scholar 

  3. van Hooren SA, Valentijn AM, Bosma H, Ponds RW, van Boxtel MP, Jolles J (2007) Cognitive functioning in healthy older adults aged 64-81: a cohort study into the effects of age, sex, and education. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 14(1):40–54

    Article  PubMed  Google Scholar 

  4. Orgeta V, Mukadam N, Sommerlad A, Livingston G (2019) The Lancet Commission on Dementia Prevention, Intervention, and Care: a call for action. Ir J Psychol Med 36(2):85–88

    Article  PubMed  CAS  Google Scholar 

  5. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D et al (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734

    Article  PubMed  Google Scholar 

  6. Frankish H, Horton R (2017) Prevention and management of dementia: a priority for public health. Lancet 390(10113):2614–2615

    Article  PubMed  Google Scholar 

  7. Rao C, Bundhamcharoen K, Kelly M, Tangcharoensathien V (2021) Mortality estimates for WHO SEAR countries: problems and prospects. BMJ Glob Health 6(11). https://doi.org/10.1136/bmjgh-2021-007177

  8. Committee on the Public Health Dimensions of Cognitive A, Board on Health Sciences P, Institute of M. The National Academies Collection: reports funded by National Institutes of Health. In: Blazer DG, Yaffe K, Liverman CT, editors. Cognitive Aging: Progress in Understanding and Opportunities for Action. Washington (DC): National Academies Press (US) Copyright 2015 by the National Academy of Sciences. All rights reserved.; 2015.

  9. Yang R, Wang H, Edelman LS, Tracy EL, Demiris G, Sward KA et al (2020) Loneliness as a mediator of the impact of social isolation on cognitive functioning of Chinese older adults. Age Ageing 49(4):599–604

    Article  PubMed  Google Scholar 

  10. Falck RS, Landry GJ, Best JR, Davis JC, Chiu BK, Liu-Ambrose T (2017) Cross-sectional relationships of physical activity and sedentary behavior with cognitive function in older adults with probable mild cognitive impairment. Phys Ther 97(10):975–984

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kooistra M, Boss HM, van der Graaf Y, Kappelle LJ, Biessels GJ, Geerlings MI (2014) Physical activity, structural brain changes and cognitive decline. The SMART-MR study. Atherosclerosis 234(1):47–53

    Article  PubMed  CAS  Google Scholar 

  12. Makizako H, Liu-Ambrose T, Shimada H, Doi T, Park H, Tsutsumimoto K et al (2015) Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. J Gerontol A Biol Sci Med Sci 70(4):480–486

    Article  PubMed  CAS  Google Scholar 

  13. O'Sullivan M, Jones DK, Summers PE, Morris RG, Williams SC, Markus HS (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57(4):632–638

    Article  PubMed  CAS  Google Scholar 

  14. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689

    Article  PubMed  Google Scholar 

  15. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301

    Article  PubMed  CAS  Google Scholar 

  17. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108(7):3017–3022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gomez-Pinilla F, Hillman C (2013) The influence of exercise on cognitive abilities. Compr Physiol 3(1):403–428

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lista I, Sorrentino G (2010) Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 30(4):493–503

    Article  PubMed  CAS  Google Scholar 

  20. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96(23):13427–13431

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S et al (2007) The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 39(8):1401–1407

    Article  PubMed  Google Scholar 

  22. Colcombe SJ, Kramer AF, McAuley E, Erickson KI, Scalf P (2004) Neurocognitive aging and cardiovascular fitness: recent findings and future directions. J Mol Neurosci 24(1):9–14

    Article  PubMed  CAS  Google Scholar 

  23. Heyn PC, Johnson KE, Kramer AF (2008) Endurance and strength training outcomes on cognitively impaired and cognitively intact older adults: a meta-analysis. J Nutr Health Aging 12(6):401–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yaffe K, Fiocco AJ, Lindquist K, Vittinghoff E, Simonsick EM, Newman AB et al (2009) Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology 72(23):2029–2035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sibley BA, Etnier JL (2003) The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci 15(3):243–256

    Article  Google Scholar 

  26. Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Pühse U (2016) Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology 53(11):1611–1626

    Article  PubMed  Google Scholar 

  27. Siette J, Reichelt AC, Westbrook RF (2014) A bout of voluntary running enhances context conditioned fear, its extinction, and its reconsolidation. Learn Mem 21(2):73–81

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fernandes J, Soares JC, do Amaral Baliego LG, Arida RM (2016) A single bout of resistance exercise improves memory consolidation and increases the expression of synaptic proteins in the hippocampus. Hippocampus 26(8):1096–1103

    Article  PubMed  CAS  Google Scholar 

  29. Kvam S, Kleppe CL, Nordhus IH, Hovland A (2016) Exercise as a treatment for depression: a meta-analysis. J Affect Disord 202:67–86

    Article  PubMed  Google Scholar 

  30. Rethorst CD, Trivedi MH (2013) Evidence-based recommendations for the prescription of exercise for major depressive disorder. J Psychiatr Pract 19(3):204–212

    Article  PubMed  Google Scholar 

  31. Chin LM, Keyser RE, Dsurney J, Chan L (2015) Improved cognitive performance following aerobic exercise training in people with traumatic brain injury. Arch Phys Med Rehabil 96(4):754–759

    Article  PubMed  Google Scholar 

  32. de Almeida AA, Gomes da Silva S, Lopim GM, Vannucci Campos D, Fernandes J, Cabral FR et al (2017) Resistance exercise reduces seizure occurrence, attenuates memory deficits and restores BDNF signaling in rats with chronic epilepsy. Neurochem Res 42(4):1230–1239

    Article  PubMed  Google Scholar 

  33. Grealy MA, Johnson DA, Rushton SK (1999) Improving cognitive function after brain injury: the use of exercise and virtual reality. Arch Phys Med Rehabil 80(6):661–667

    Article  PubMed  CAS  Google Scholar 

  34. Intlekofer KA, Cotman CW (2013) Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis 57:47–55

    Article  PubMed  CAS  Google Scholar 

  35. Jayakody K, Gunadasa S, Hosker C (2014) Exercise for anxiety disorders: systematic review. Br J Sports Med 48(3):187–196

    Article  PubMed  Google Scholar 

  36. Matura S, Carvalho AF, Alves GS, Pantel J (2016) Physical exercise for the treatment of neuropsychiatric disturbances in Alzheimer’s dementia: possible mechanisms, current evidence and future directions. Curr Alzheimer Res 13(10):1112–1123

    Article  PubMed  CAS  Google Scholar 

  37. Peixinho-Pena LF, Fernandes J, de Almeida AA, Novaes Gomes FG, Cassilhas R, Venancio DP et al (2012) A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy Behav 25(3):323–328

    Article  PubMed  Google Scholar 

  38. Reynolds GO, Otto MW, Ellis TD, Cronin-Golomb A (2016) The therapeutic potential of exercise to improve mood, cognition, and sleep in Parkinson’s disease. Mov Disord 31(1):23–38

    Article  PubMed  Google Scholar 

  39. Shu HF, Yang T, Yu SX, Huang HD, Jiang LL, Gu JW et al (2014) Aerobic exercise for Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. PLoS One 9(7):e100503

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dunn AL, Trivedi MH, Kampert JB, Clark CG, Chambliss HO (2005) Exercise treatment for depression: efficacy and dose response. Am J Prev Med 28(1):1–8

    Article  PubMed  Google Scholar 

  41. Blumenthal JA, Babyak MA, Moore KA, Craighead WE, Herman S, Khatri P et al (1999) Effects of exercise training on older patients with major depression. Arch Intern Med 159(19):2349–2356

    Article  PubMed  CAS  Google Scholar 

  42. van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuromolecular Med 10(2):128–140

    Article  PubMed  Google Scholar 

  43. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270

    Article  PubMed  Google Scholar 

  44. Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472

    Article  PubMed  CAS  Google Scholar 

  45. Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20(10):2580–2590

    Article  PubMed  Google Scholar 

  46. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM et al (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12(16):2499–2509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Boppart MD, Asp S, Wojtaszewski JF, Fielding RA, Mohr T, Goodyear LJ (2000) Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol 526(Pt 3):663–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yu M, Blomstrand E, Chibalin AV, Krook A, Zierath JR (2001) Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle. J Physiol 536(Pt 1):273–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Aronson D, Boppart MD, Dufresne SD, Fielding RA, Goodyear LJ (1998) Exercise stimulates c-Jun NH2 kinase activity and c-Jun transcriptional activity in human skeletal muscle. Biochem Biophys Res Commun 251(1):106–110

    Article  PubMed  CAS  Google Scholar 

  50. Widegren U, Wretman C, Lionikas A, Hedin G, Henriksson J (2000) Influence of exercise intensity on ERK/MAP kinase signalling in human skeletal muscle. Pflugers Arch 441(2-3):317–322

    Article  PubMed  CAS  Google Scholar 

  51. Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, Schiaffino S (2000) Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2(3):142–147

    Article  PubMed  CAS  Google Scholar 

  52. Higginson J, Wackerhage H, Woods N, Schjerling P, Ratkevicius A, Grunnet N et al (2002) Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture. Pflugers Arch 445(3):437–443

    Article  PubMed  Google Scholar 

  53. Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD (2015) Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem 290(1):209–227

    Article  PubMed  CAS  Google Scholar 

  54. Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A et al (2013) Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal 18(6):603–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gomez-Cabrera MC, Close GL, Kayani A, McArdle A, Viña J, Jackson MJ (2010) Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation. Am J Physiol Regul Integr Comp Physiol 298(1):R2–R8

    Article  PubMed  CAS  Google Scholar 

  56. Ameziane-El-Hassani R, Schlumberger M, Dupuy C (2016) NADPH oxidases: new actors in thyroid cancer? Nat Rev Endocrinol 12(8):485–494

    Article  PubMed  CAS  Google Scholar 

  57. Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE (2019) The emerging roles of nicotinamide adenine dinucleotide phosphate oxidase 2 in skeletal muscle redox signaling and metabolism. Antioxid Redox Signal 31(18):1371–1410

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J (2004) Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J 18(13):1499–1506

    Article  PubMed  CAS  Google Scholar 

  59. Merry TL, Ristow M (2016) Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol 594(18):5195–5207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106(21):8665–8670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Vasilaki A, Mansouri A, Van Remmen H, van der Meulen JH, Larkin L, Richardson AG et al (2006) Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell 5(2):109–117

    Article  PubMed  CAS  Google Scholar 

  62. McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278(24):21592–21600

    Article  PubMed  CAS  Google Scholar 

  63. Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J (2010) Nuclear redox signaling. Antioxid Redox Signal 12(6):713–742

    Article  PubMed  CAS  Google Scholar 

  65. Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO (2007) Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem 282(1):194–199

    Article  PubMed  CAS  Google Scholar 

  66. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    Article  PubMed  CAS  Google Scholar 

  67. Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA (2021) Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants 10(4):537. https://doi.org/10.3390/antiox10040537

  68. Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130

    Article  PubMed  Google Scholar 

  69. Colzato LS, Kramer AF, Bherer L (2018) Editorial special topic: enhancing brain and cognition via physical exercise. Springer, pp. 135–136

    Google Scholar 

  70. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9(1):58–65

    Article  PubMed  CAS  Google Scholar 

  71. Raichlen DA, Alexander GE (2017) Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends Neurosci 40(7):408–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Roig M, Nordbrandt S, Geertsen SS, Nielsen JB (2013) The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci Biobehav Rev 37(8):1645–1666

    Article  PubMed  Google Scholar 

  73. ten Brinke LF, Hsu CL, Best JR, Barha CK, Liu-Ambrose T (2018) Increased aerobic fitness is associated with cortical thickness in older adults with mild vascular cognitive impairment. J Cogn Enhanc 2:157–169

    Article  Google Scholar 

  74. Frith E, Loprinzi PD (2018) Physical activity and individual cognitive function parameters: Unique exercise-induced mechanisms. JCBPR 7:92–106

    Article  Google Scholar 

  75. Cheval B, Daou M, Cabral DA, Bacelar MF, Parma JO, Forestier C et al (2020) Higher inhibitory control is required to escape the innate attraction to effort minimization. Psychol Sport Exerc 51:101781

    Article  Google Scholar 

  76. Cheval B, Rebar AL, Miller MW, Sieber S, Orsholits D, Baranyi G et al (2019) Cognitive resources moderate the adverse impact of poor perceived neighborhood conditions on self-reported physical activity of older adults. Prev Med 126:105741

    Article  PubMed  Google Scholar 

  77. Choi KW, Chen CY, Stein MB, Klimentidis YC, Wang MJ, Koenen KC et al (2019) Assessment of bidirectional relationships between physical activity and depression among adults: a 2-sample Mendelian randomization study. JAMA Psychiatry 76(4):399–408

    Article  PubMed  PubMed Central  Google Scholar 

  78. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22(3):123–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91(4):267–270

    Article  PubMed  CAS  Google Scholar 

  80. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17(5):182–190

    Article  PubMed  CAS  Google Scholar 

  81. Groot C, Hooghiemstra AM, Raijmakers PG, van Berckel BN, Scheltens P, Scherder EJ et al (2016) The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev 25:13–23

    Article  PubMed  CAS  Google Scholar 

  82. Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28(11):2278–2287

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vilela TC, Muller AP, Damiani AP, Macan TP, da Silva S, Canteiro PB et al (2017) Strength and aerobic exercises improve spatial memory in aging rats through stimulating distinct neuroplasticity mechanisms. Mol Neurobiol 54(10):7928–7937

    Article  PubMed  CAS  Google Scholar 

  84. Maejima H, Kanemura N, Kokubun T, Murata K, Takayanagi K (2018) Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice. Neurosci Lett 665:67–73

    Article  PubMed  CAS  Google Scholar 

  85. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T et al (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 5:e15092. https://doi.org/10.7554/eLife.15092

  86. Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H (2014) New insight in expression, transport, and secretion of brain-derived neurotrophic factor: implications in brain-related diseases. World J Biol Chem 5(4):409–428

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kennedy KM, Reese ED, Horn MM, Sizemore AN, Unni AK, Meerbrey ME et al (2015) BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res 1612:104–117

    Article  PubMed  CAS  Google Scholar 

  88. Toh YL, Ng T, Tan M, Tan A, Chan A (2018) Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: a systematic review. Brain Behav 8(7):e01009

    Article  PubMed  PubMed Central  Google Scholar 

  89. Miyajima F, Ollier W, Mayes A, Jackson A, Thacker N, Rabbitt P et al (2008) Brain-derived neurotrophic factor polymorphism Val66Met influences cognitive abilities in the elderly. Genes Brain Behav 7(4):411–417

    Article  PubMed  CAS  Google Scholar 

  90. Ward DD, Summers MJ, Saunders NL, Janssen P, Stuart KE, Vickers JC (2014) APOE and BDNF Val66Met polymorphisms combine to influence episodic memory function in older adults. Behav Brain Res 271:309–315

    Article  PubMed  CAS  Google Scholar 

  91. Huang R, Huang J, Cathcart H, Smith S, Poduslo SE (2007) Genetic variants in brain-derived neurotrophic factor associated with Alzheimer’s disease. J Med Genet 44(2):e66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23

    Article  PubMed  CAS  Google Scholar 

  93. Matyi J, Tschanz JT, Rattinger GB, Sanders C, Vernon EK, Corcoran C et al (2017) Sex differences in risk for Alzheimer’s disease related to neurotrophin gene polymorphisms: the Cache County Memory Study. J Gerontol A Biol Sci Med Sci 72(12):1607–1613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Barrett GL, Reid CA, Tsafoulis C, Zhu W, Williams DA, Paolini AG et al (2010) Enhanced spatial memory and hippocampal long-term potentiation in p75 neurotrophin receptor knockout mice. Hippocampus 20(1):145–152

    Article  PubMed  CAS  Google Scholar 

  95. Buhusi M, Etheredge C, Granholm AC, Buhusi CV (2017) Increased hippocampal ProBDNF contributes to memory impairments in aged mice. Front Aging Neurosci 9:284

    Article  PubMed  PubMed Central  Google Scholar 

  96. Murphy M, Wilson YM, Vargas E, Munro KM, Smith B, Huang A et al (2015) Reduction of p75 neurotrophin receptor ameliorates the cognitive deficits in a model of Alzheimer’s disease. Neurobiol Aging 36(2):740–752

    Article  PubMed  CAS  Google Scholar 

  97. Simmons DA, Knowles JK, Belichenko NP, Banerjee G, Finkle C, Massa SM et al (2014) A small molecule p75NTR ligand, LM11A-31, reverses cholinergic neurite dystrophy in Alzheimer’s disease mouse models with mid- to late-stage disease progression. PLoS One 9(8):e102136

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chen Z, Simmons MS, Perry RT, Wiener HW, Harrell LE, Go RC (2008) Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) with Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 147(3):363–369

    Article  PubMed  Google Scholar 

  99. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  PubMed  CAS  Google Scholar 

  100. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472

    Article  PubMed  CAS  Google Scholar 

  101. Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rawle MJ, Davis D, Bendayan R, Wong A, Kuh D, Richards M (2018) Apolipoprotein-E (Apoe) ε4 and cognitive decline over the adult life course. Transl Psychiatry 8(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ritchie SJ, Hill WD, Marioni RE, Davies G, Hagenaars SP, Harris SE et al (2020) Polygenic predictors of age-related decline in cognitive ability. Mol Psychiatry 25(10):2584–2598

    Article  PubMed  Google Scholar 

  104. Wisdom NM, Callahan JL, Hawkins KA (2011) The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. Neurobiol Aging 32(1):63–74

    Article  PubMed  CAS  Google Scholar 

  105. Haan MN, Shemanski L, Jagust WJ, Manolio TA, Kuller L (1999) The role of APOE epsilon4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA 282(1):40–46

    Article  PubMed  CAS  Google Scholar 

  106. Deeny SP, Poeppel D, Zimmerman JB, Roth SM, Brandauer J, Witkowski S et al (2008) Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers. Biol Psychol 78(2):179–187

    Article  PubMed  PubMed Central  Google Scholar 

  107. Etnier JL, Caselli RJ, Reiman EM, Alexander GE, Sibley BA, Tessier D et al (2007) Cognitive performance in older women relative to ApoE-epsilon4 genotype and aerobic fitness. Med Sci Sports Exerc 39(1):199–207

    Article  PubMed  CAS  Google Scholar 

  108. Krell-Roesch J, Pink A, Roberts RO, Stokin GB, Mielke MM, Spangehl KA et al (2016) Timing of physical activity, apolipoprotein E ε4 genotype, and risk of incident mild cognitive impairment. J Am Geriatr Soc 64(12):2479–2486

    Article  PubMed  PubMed Central  Google Scholar 

  109. Luck T, Riedel-Heller SG, Luppa M, Wiese B, Köhler M, Jessen F et al (2014) Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: analysis of gene-environment interaction for the risk of dementia and Alzheimer’s disease dementia. Psychol Med 44(6):1319–1329

    Article  PubMed  CAS  Google Scholar 

  110. Niti M, Yap KB, Kua EH, Tan CH, Ng TP (2008) Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int Psychogeriatr 20(2):237–251

    Article  PubMed  Google Scholar 

  111. Pizzie R, Hindman H, Roe CM, Head D, Grant E, Morris JC et al (2014) Physical activity and cognitive trajectories in cognitively normal adults: the adult children study. Alzheimer Dis Assoc Disord 28(1):50–57

    Article  PubMed  PubMed Central  Google Scholar 

  112. Podewils LJ, Guallar E, Kuller LH, Fried LP, Lopez OL, Carlson M et al (2005) Physical activity, APOE genotype, and dementia risk: findings from the cardiovascular health cognition study. Am J Epidemiol 161(7):639–651

    Article  PubMed  Google Scholar 

  113. Rovio S, Kåreholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J et al (2005) Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 4(11):705–711

    Article  PubMed  Google Scholar 

  114. Schuit AJ, Feskens EJ, Launer LJ, Kromhout D (2001) Physical activity and cognitive decline, the role of the apolipoprotein e4 allele. Med Sci Sports Exerc 33(5):772–777

    Article  PubMed  CAS  Google Scholar 

  115. Law CK, Lam FM, Chung RC, Pang MY (2020) Physical exercise attenuates cognitive decline and reduces behavioural problems in people with mild cognitive impairment and dementia: a systematic review. J Physiother 66(1):9–18

    Article  PubMed  Google Scholar 

  116. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH (2017) Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol 219(1):22–96

    Article  CAS  Google Scholar 

  117. He XF, Liu DX, Zhang Q, Liang FY, Dai GY, Zeng JS et al (2017) Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci 10:144

    Article  PubMed  PubMed Central  Google Scholar 

  118. de Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C et al (2015) Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 1618:75–82

    Article  PubMed  Google Scholar 

  119. Chupel MU, Minuzzi LG, Furtado G, Santos ML, Hogervorst E, Filaire E et al (2018) Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women. Appl Physiol Nutr Metab 43(7):733–741

    Article  PubMed  CAS  Google Scholar 

  120. Pang R, Wang X, Pei F, Zhang W, Shen J, Gao X et al (2019) Regular exercise enhances cognitive function and intracephalic GLUT expression in Alzheimer’s disease model mice. J Alzheimers Dis 72(1):83–96

    Article  PubMed  Google Scholar 

  121. Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K et al (2018) Irisin mediates effects on bone and fat via αV integrin receptors. Cell 175(7):1756–68.e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Chen K, Wang K, Wang T (2022) Protective effect of irisin against Alzheimer’s disease. Front Psych 13:967683

    Article  Google Scholar 

  123. Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 25(1):165–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G et al (2023) Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 12(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lee B, Shin M, Park Y, Won SY, Cho KS (2021) Physical exercise-induced myokines in neurodegenerative diseases. Int J Mol Sci 22(11):5795. https://doi.org/10.3390/ijms22115795

  126. Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Häggblom MM, Lightfoot SA et al (2016) The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One 11(3):e0150502

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kim MS, Kim Y, Choi H, Kim W, Park S, Lee D et al (2020) Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 69(2):283–294

    Article  PubMed  CAS  Google Scholar 

  128. Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V et al (2019) Diet in Parkinson’s disease: critical role for the microbiome. Front Neurol 10:1245

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shin HE, Kwak SE, Zhang DD, Lee J, Yoon KJ, Cho HS et al (2020) Effects of treadmill exercise on the regulation of tight junction proteins in aged mice. Exp Gerontol 141:111077

    Article  PubMed  CAS  Google Scholar 

  130. Huang B, Chen K, Li Y (2023) Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 15:1194559

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pareja-Galeano H, Sanchis-Gomar F, García-Giménez JL (2014) Physical exercise and epigenetic modulation: elucidating intricate mechanisms. Sports Med 44(4):429–436

    Article  PubMed  Google Scholar 

  132. Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C, Gomez-Cabrera MC, Pallardo FV, Lippi G (2012) Physical exercise as an epigenetic modulator: eustress, the “positive stress” as an effector of gene expression. J Strength Cond Res 26(12):3469–3472

    Article  PubMed  Google Scholar 

  133. Santos-Rebouças CB, Pimentel MM (2007) Implication of abnormal epigenetic patterns for human diseases. Eur J Hum Genet 15(1):10–17

    Article  PubMed  Google Scholar 

  134. Taniguchi S, Sagara J (2007) Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC. Semin Immunopathol 29(3):231–238

    Article  PubMed  CAS  Google Scholar 

  135. Radom-Aizik S, Zaldivar F Jr, Leu SY, Adams GR, Oliver S, Cooper DM (2012) Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci 5(1):32–38

    Article  PubMed  PubMed Central  Google Scholar 

  136. Radom-Aizik S, Zaldivar F Jr, Oliver S, Galassetti P, Cooper DM (2010) Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol 109(1):252–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H et al (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31(9):671–675

    Article  PubMed  CAS  Google Scholar 

  138. Bopp T, Radsak M, Schmitt E, Schild H (2010) New strategies for the manipulation of adaptive immune responses. Cancer Immunol Immunother 59(9):1443–1448

    Article  PubMed  CAS  Google Scholar 

  139. Franks AL, Slansky JE (2012) Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res 32(4):1119–1136

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Ntanasis-Stathopoulos J, Tzanninis JG, Philippou A, Koutsilieris M (2013) Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact 13(2):133–146

    PubMed  CAS  Google Scholar 

  141. Dimauro I, Scalabrin M, Fantini C, Grazioli E, Beltran Valls MR, Mercatelli N et al (2016) Resistance training and redox homeostasis: correlation with age-associated genomic changes. Redox Biol 10:34–44

    Article  PubMed  PubMed Central  Google Scholar 

  142. McGee SL, Hargreaves M (2011) Histone modifications and exercise adaptations. J Appl Physiol 110(1):258–263

    Article  PubMed  CAS  Google Scholar 

  143. Zimmer P, Baumann FT, Bloch W, Schenk A, Koliamitra C, Jensen P et al (2014) Impact of exercise on pro inflammatory cytokine levels and epigenetic modulations of tumor-competitive lymphocytes in non-Hodgkin-lymphoma patients-randomized controlled trial. Eur J Haematol 93(6):527–532

    Article  PubMed  CAS  Google Scholar 

  144. Philp A, Rowland T, Perez-Schindler J, Schenk S (2014) Understanding the acetylome: translating targeted proteomics into meaningful physiology. Am J Physiol Cell Physiol 307(9):C763–C773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Lavratti C, Dorneles G, Pochmann D, Peres A, Bard A, de Lima SL et al (2017) Exercise-induced modulation of histone H4 acetylation status and cytokines levels in patients with schizophrenia. Physiol Behav 168:84–90

    Article  PubMed  CAS  Google Scholar 

  146. Flowers E, Won GY, Fukuoka Y (2015) MicroRNAs associated with exercise and diet: a systematic review. Physiol Genomics 47(1):1–11

    Article  PubMed  CAS  Google Scholar 

  147. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA Jr, Sjoblom T et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103(10):3687–3692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891

    PubMed  CAS  Google Scholar 

  151. Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I et al (2014) Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiol Genomics 46(20):747–765

    Article  PubMed  PubMed Central  Google Scholar 

  152. Denham J, O'Brien BJ, Marques FZ, Charchar FJ (2015) Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol 118(4):475–488

    Article  PubMed  CAS  Google Scholar 

  153. Lindahl T (1981) DNA methylation and control of gene expression. Nature 290(5805):363–364

    Article  PubMed  CAS  Google Scholar 

  154. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT, Kohlbacher O et al (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  PubMed  CAS  Google Scholar 

  156. Sakuma K, Yamaguchi A (2012) Novel intriguing strategies attenuating to sarcopenia. J Aging Res 2012:251217

    Article  PubMed  PubMed Central  Google Scholar 

  157. Horsburgh S, Robson-Ansley P, Adams R, Smith C (2015) Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev 21:26–41

    PubMed  Google Scholar 

  158. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367

    Article  PubMed  CAS  Google Scholar 

  159. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Article  PubMed  PubMed Central  Google Scholar 

  160. Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19(6):371–384

    Article  PubMed  CAS  Google Scholar 

  161. Gale CR, Marioni RE, Čukić I, Chastin SF, Dall PM, Dontje ML et al (2018) The epigenetic clock and objectively measured sedentary and walking behavior in older adults: the Lothian Birth Cohort 1936. Clin Epigenetics 10:4

    Article  PubMed  PubMed Central  Google Scholar 

  162. Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE et al (2015) The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol 44(4):1388–1396

    Article  PubMed  PubMed Central  Google Scholar 

  163. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev (2):CD005381. https://doi.org/10.1002/14651858.CD005381

  164. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E et al (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61(11):1166–1170

    Article  PubMed  Google Scholar 

  165. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H et al (2013) Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28:90–99

    Article  PubMed  CAS  Google Scholar 

  166. Zoladz JA, Pilc A (2010) The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol 61(5):533–541

    PubMed  CAS  Google Scholar 

  167. Heyn P, Abreu BC, Ottenbacher KJ (2004) The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 85(10):1694–1704

    Article  PubMed  Google Scholar 

  168. Nagamatsu LS, Handy TC, Hsu CL, Voss M, Liu-Ambrose T (2012) Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med 172(8):666–668

    Article  PubMed  PubMed Central  Google Scholar 

  169. Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R et al (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. J Alzheimers Dis 39(2):401–408

    Article  PubMed  CAS  Google Scholar 

  170. Etgen T, Sander D, Huntgeburth U, Poppert H, Förstl H, Bickel H (2010) Physical activity and incident cognitive impairment in elderly persons: the INVADE study. Arch Intern Med 170(2):186–193

    Article  PubMed  CAS  Google Scholar 

  171. Nouchi R, Taki Y, Takeuchi H, Sekiguchi A, Hashizume H, Nozawa T et al (2014) Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age 36(2):787–799

    Article  PubMed  CAS  Google Scholar 

  172. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756

    Article  PubMed  CAS  Google Scholar 

  173. Zhong T, Ren F, Huang CS, Zou WY, Yang Y, Pan YD et al (2016) Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice. Neuroscience 316:378–388

    Article  PubMed  CAS  Google Scholar 

  174. de Meireles LC, Bertoldi K, Cechinel LR, Schallenberger BL, da Silva VK, Schröder N et al (2016) Treadmill exercise induces selective changes in hippocampal histone acetylation during the aging process in rats. Neurosci Lett 634:19–24

    Article  PubMed  Google Scholar 

  175. Cechinel LR, Basso CG, Bertoldi K, Schallenberger B, de Meireles LCF, Siqueira IR (2016) Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats. Behav Brain Res 313:82–87

    Article  PubMed  Google Scholar 

  176. de Meireles LC, Bertoldi K, Elsner VR, Moysés Fdos S, Siqueira IR (2014) Treadmill exercise alters histone acetylation differently in rats exposed or not exposed to aversive learning context. Neurobiol Learn Mem 116:193–196

    Article  PubMed  Google Scholar 

  177. Chwang WB, O'Riordan KJ, Levenson JM, Sweatt JD (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 13(3):322–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Koshibu K, Gräff J, Beullens M, Heitz FD, Berchtold D, Russig H et al (2009) Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci 29(41):13079–13089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Koshibu K, Gräff J, Mansuy IM (2011) Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience 173:30–36

    Article  PubMed  CAS  Google Scholar 

  180. Collins A, Hill LE, Chandramohan Y, Whitcomb D, Droste SK, Reul JM (2009) Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS One 4(1):e4330

    Article  PubMed  PubMed Central  Google Scholar 

  181. Chen WQ, Viidik A, Skalicky M, Höger H, Lubec G (2007) Hippocampal signaling cascades are modulated in voluntary and treadmill exercise rats. Electrophoresis 28(23):4392–4400

    Article  PubMed  CAS  Google Scholar 

  182. Li T, Tao X, Sun R, Han C, Li X, Zhu Z et al (2023) Cognitive-exercise dual-task intervention ameliorates cognitive decline in natural aging rats via inhibiting the promotion of LncRNA NEAT1/miR-124-3p on caveolin-1-PI3K/Akt/GSK3β Pathway. Brain Res Bull 202:110761

    Article  PubMed  CAS  Google Scholar 

  183. Liu B, Li J, Cairns MJ (2014) Identifying miRNAs, targets and functions. Brief Bioinform 15(1):1–19

    Article  PubMed  Google Scholar 

  184. Dong J, Liu Y, Zhan Z, Wang X (2018) MicroRNA-132 is associated with the cognition improvement following voluntary exercise in SAMP8 mice. Brain Res Bull 140:80–87

    Article  PubMed  CAS  Google Scholar 

  185. Valenti MT, Deiana M, Cheri S, Dotta M, Zamboni F, Gabbiani D et al (2019) Physical exercise modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p expression in progenitor cells promoting osteogenesis. Cells 8(7):742. https://doi.org/10.3390/cells8070742

  186. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci 102(45):16426–16431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng H-YM et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci 105(26):9093–9098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Da Silva FC, Rode MP, Vietta GG, Iop RDR, Creczynski-Pasa TB, Martin AS et al (2021) Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Mol Med Rep 24(2):618. https://doi.org/10.3892/mmr.2021.12257

  189. Liu SX, Zheng F, Xie KL, Xie MR, Jiang LJ, Cai Y (2019) Exercise reduces insulin resistance in type 2 diabetes mellitus via mediating the lncRNA MALAT1/microrna-382-3p/resistin axis. Mol Ther Nucleic Acids 18:34–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Sun X, Shen H, Liu S, Gao J, Zhang S (2020) Long noncoding RNA SNHG14 promotes the aggressiveness of retinoblastoma by sponging microRNA-124 and thereby upregulating STAT3. Int J Mol Med 45(6):1685–1696

    PubMed  PubMed Central  CAS  Google Scholar 

  191. Zhang LM, Wang MH, Yang HC, Tian T, Sun GF, Ji YF et al (2019) Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/ α-synuclein pathway. Aging 11(21):9264–9279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Huaying C, Xing J, Luya J, Linhui N, Di S, Xianjun D (2020) A signature of five long non-coding RNAs for predicting the prognosis of Alzheimer’s disease based on competing endogenous RNA networks. Front Aging Neurosci 12:598606

    Article  PubMed  Google Scholar 

  193. He Y, Qiang Y (2021) Mechanism of autonomic exercise improving cognitive function of Alzheimer’s disease by regulating lncRNA SNHG14. Am J Alzheimers Dis Other Demen 36:15333175211027681

    Article  PubMed  Google Scholar 

  194. Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46(2):245–254

    Article  PubMed  CAS  Google Scholar 

  195. Wang J, Niu Y, Tao H, Xue M, Wan C (2020) Knockdown of lncRNA TUG1 inhibits hippocampal neuronal apoptosis and participates in aerobic exercise-alleviated vascular cognitive impairment. Biol Res 53(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Patnode CD, Perdue LA, Rossom RC, Rushkin MC, Redmond N, Thomas RG et al (2020) Screening for cognitive impairment in older adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 323(8):764–785

    Article  PubMed  Google Scholar 

  197. Russ TC, Morling JR (2012) Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev 2012(9):CD009132. https://doi.org/10.1002/14651858.CD009132

  198. Brehmer Y, Kalpouzos G, Wenger E, Lövdén M (2014) Plasticity of brain and cognition in older adults. Psychol Res 78:790–802

    Article  PubMed  Google Scholar 

  199. Joubert C, Chainay H (2018) Aging brain: the effect of combined cognitive and physical training on cognition as compared to cognitive and physical training alone–a systematic review. Clin Interv Aging 13:1267–1301

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lauenroth A, Ioannidis AE, Teichmann B (2016) Influence of combined physical and cognitive training on cognition: a systematic review. BMC Geriatr 16:1–14

    Article  Google Scholar 

  201. Bradburn S, Murgatroyd C, Ray N (2019) Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Ageing Res Rev 50:1–8

    Article  PubMed  CAS  Google Scholar 

  202. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Initiative AsDN (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Li X-L, Tao X, Li T-C, Zhu Z-M, Huang P-L, Gong W-J (2022) Cognitive–exercise dual-task intervention ameliorates cognitive decline in natural aging rats through reducing oxidative stress and enhancing synaptic plasticity. Exp Gerontol 169:111981

    Article  PubMed  CAS  Google Scholar 

  205. Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 19(5):6891–6910

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218:817–831

    Article  PubMed  Google Scholar 

  207. Gao J, Wang W-Y, Mao Y-W, Gräff J, Guan J-S, Pan L et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Earls LR, Westmoreland JJ, Zakharenko SS (2014) Non-coding RNA regulation of synaptic plasticity and memory: implications for aging. Ageing Res Rev 17:34–42

    Article  PubMed  CAS  Google Scholar 

  209. Xie S-P, Zhou F, Li J, Duan S-j (2019) NEAT1 regulates MPP+-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci Lett 708:134340

    Article  PubMed  CAS  Google Scholar 

  210. Butler AA, Johnston DR, Kaur S, Lubin FD (2019) Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal 12(588):eaaw9277

    Article  PubMed  PubMed Central  Google Scholar 

  211. Nwosu ZC, Ebert MP, Dooley S, Meyer C (2016) Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer 15(1):1–12

    Article  Google Scholar 

  212. Cha S-H, Choi YR, Heo C-H, Kang S-J, Joe E-H, Jou I et al (2015) Loss of parkin promotes lipid rafts-dependent endocytosis through accumulating caveolin-1: implications for Parkinson’s disease. Mol Neurodegener 10(1):1–13

    Article  Google Scholar 

  213. Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F et al (2017) MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells. Oncotarget 8(15):24314

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ikezu T, Trapp BD, Song KS, Schlegel A, Lisanti MP, Okamoto T (1998) Caveolae, plasma membrane microdomains for α-secretase-mediated processing of the amyloid precursor protein. J Biol Chem 273(17):10485–10495

    Article  PubMed  CAS  Google Scholar 

  215. Van Helmond Z, Miners J, Bednall E, Chalmers K, Zhang Y, Wilcock G et al (2007) Caveolin-1 and-2 and their relationship to cerebral amyloid angiopathy in Alzheimer’s disease. Neuropathol Appl Neurobiol 33(3):317–327

    Article  PubMed  Google Scholar 

  216. Maqbool M, Mobashir M, Hoda N (2016) Pivotal role of glycogen synthase kinase-3: a therapeutic target for Alzheimer’s disease. Eur J Med Chem 107:63–81

    Article  PubMed  CAS  Google Scholar 

  217. Qi Y, Dou D-Q, Jiang H, Zhang B-B, Qin W-Y, Kang K et al (2017) Arctigenin attenuates learning and memory deficits through PI3k/Akt/GSK-3β pathway reducing tau hyperphosphorylation in Aβ-induced AD mice. Planta Med 83(01/02):51–56

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Shanxi Province Higher Education Reform and Innovation Project (project number: J20221160) and the Shanxi Province Education Science “14th Five-Year Plan” 2021 annual project (project number: GH-21269).

Author information

Authors and Affiliations

Authors

Contributions

Runhong Zhang and Shangwu Liu involved in manuscript drafting and data collection. All authors approved the final paper. Seyed Mojtaba Mousavi oversaw the study.

Corresponding authors

Correspondence to Runhong Zhang or Seyed Mojtaba Mousavi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, S. & Mousavi, S.M. Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03970-7

Keywords

Navigation