Skip to main content

Advertisement

Log in

The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer’s disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson’s disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2’s biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article.

Abbreviations

PKM2:

Pyruvate kinase M2

AD :

Alzheimer’s disease

PD:

Parkinson’s disease

PK:

Pyruvate kinase

PEP:

Phosphoenolpyruvate

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

HIF-1α:

Hypoxia-inducible factor 1α

HRE:

Hypoxia response element

PI3K:

Phosphoinositide 3-kinase

mTOR:

Mammalian target of rapamycin

AMPK:

AMP-activated protein kinase

PTEN:

Phosphatase and tensin homolog

EGFR:

Epidermal growth factor receptor

PKC:

Protein kinase C

NF-κB:

Nuclear factor kappa enhancer binding protein

PPAR-γ:

Peroxisome proliferator-activated receptor γ

mTORC2:

Mammalian target of rapamycin complex 2

AKT:

Protein kinase B

APJ:

Angiotensin II receptor-like 1

SRSF3:

Arginine rich splicing factor 3

PTBP1:

Polypyrimidine tract binding protein 1

hnRNPA1/A2:

Heterogeneous nuclear ribonucleoprotein A1/A2

circRNA:

Circular RNAs

circSRRM4:

CircRNA serine/arginine repetitive matrix 4

miRNAs:

MicroRNAs

miR-124:

MicroRNA-124

RBM4:

RNA-binding motif 4

PHB2:

Prohibitin 2

lncRNAs:

Long non-coding RNAs

LINC00689:

LncRNA long intergenic non-protein coding RNA 689

ceRNA:

Competing endogenous RNA

circMAT2B:

Circular RNA MAT2B

Mbd2:

Methyl-CpG binding domain protein 2

PPP:

Pentose phosphate pathway

FBP:

Fructose-1,6-bisphosphate

PHD3:

Prolyl hydroxylase 3

GLUT1:

Glucose transporter 1

LDHA:

Lactate dehydrogenase A

PDK1:

Pyruvate dehydrogenase kinase 1

iNs:

Induced neurons

LDH5:

Lactate dehydrogenase isoform 5

MCTs:

Monocarboxylate transporters

NMDA:

N-methyl-D-aspartate

NMDAR:

NMDA receptor

ERK1/2:

Extracellular signal-regulated protein kinases 1 and 2

Bcl-2:

B-cell lymphoma 2

Bax:

Bcl2-associated X

CDKs:

Cyclin-dependent kinases

STAT3:

Signal transducers and activators of transcription 3

6-OHDA:

6-Hydroxydopamine

LPS:

Lipopolysaccharide

Wnt:

Wingless/integrated

GCI:

Global cerebral ischemia

5′ Tyr-tRF:

5′ TRNA fragments derived from tyrosine pre-tRNA

CCND1:

Cyclin D1

HDACs:

Histone deacetylases

MAPK:

Mitogen-activated protein kinase

SCI:

Spinal cord injury

TCF4:

T-cell factor 4

FAK:

Focal adhesion kinase

VEGF:

Vascular epithelial growth factor

VCP:

Valosin-containing protein

TLRs:

Toll-like receptors

Pyk2:

Proline-rich tyrosine kinase 2

PGC-1α:

Peroxisome proliferator-activated receptor-γ co-activator 1-α

HMGB1:

High-mobility group box 1

NLRP3:

NLR family, pyrin domain containing 3

AIM2:

Absent in melanoma 2

EIF2AK2 or PKR:

Eukaryotic translation initiation factor 2 alpha kinase 2

iNOS:

Inducible nitric oxide synthase

COX-2:

Cyclooxygenase-2

MyD88:

Myeloid differentiation factor 88

TRAF6:

TNF receptor-associated factor 6

NOX4:

NADPH oxidase 4

IFN-γ:

Interferon-γ

ROS:

Reactive oxygen species

ATF2:

Activation transcription factor 2

H3:

Histone 3

C1q:

Complement component 1q

TNF:

Tumor necrosis factor

IL:

Interleukin

C3:

Complement component 3

C3aR:

C3a receptors

RA:

Rheumatoid arthritis

Th17:

Helper T cells 17

DCs:

Dendritic cells

JNK:

C-Jun N-terminal kinase

mDCs:

Myeloid dendritic cells

RNS:

Reactive nitrogen species

NADPH:

Nicotinamide adenine dinucleotide phosphate hydride

GSH:

Reduced glutathione

Nrf2:

Nuclear factor-erythroid-2-related factor 2

GPX4:

Glutathione peroxidase 4

Gclc:

The catalyzing subunit of glutamate-cysteine ligase

Gclm:

The modifying subunit of glutamate-cysteine ligase

NQO1:

NADPH quinone oxidoreductase 1

TrxR1:

Thioredoxin reductase 1

Trx:

Thioredoxin

NAD + :

Nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

UPR:

Unfolded protein response

ARE:

Antioxidant response element

Drp1:

Dynamin-related protein 1

Mfn2:

Mitochondrial fusion protein 2

MMP:

Mitochondrial membrane potential

OPA1:

Optic atrophy 1

PP1:

Protein phosphatase 1

FUNDC1:

FUN14 domain-containing 1

Aβ:

Amyloid β-peptide

APH1:

Aph-1 homolog

NCT:

Nicastrin

IFITM3:

Interferon-induced transmembrane protein 3

NPSLE:

Neuropsychiatric systemic lupus erythematosus

MCI:

Mild cognitive impairment

BDNF:

Brain-derived neurotrophic factor

PSD:

Post-stroke depression

References

  1. Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, Peng C (2021) Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett 503:240–248. https://doi.org/10.1016/j.canlet.2020.11.018

    Article  PubMed  Google Scholar 

  2. Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980. https://doi.org/10.1016/j.biocel.2010.02.005

    Article  PubMed  Google Scholar 

  3. Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, Li C, Yang F et al (2017) Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res 27:329–351. https://doi.org/10.1038/cr.2016.159

    Article  PubMed  Google Scholar 

  4. Yang W, Lu Z (2015) Pyruvate kinase M2 at a glance. J Cell Sci 128:1655–1660. https://doi.org/10.1242/jcs.166629

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. https://doi.org/10.1523/jneurosci.1860-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wei X, Jin XH, Meng XW, Hua J, Ji FH, Wang LN, Yang JP (2020) Platelet-rich plasma improves chronic inflammatory pain by inhibiting PKM2-mediated aerobic glycolysis in astrocytes. Ann Transl Med 8:1456. https://doi.org/10.21037/atm-20-6502

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gui DY, Lewis CA, Vander Heiden MG (2013) Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci Signal 6:pe7. https://doi.org/10.1126/scisignal.2003925

    Article  PubMed  Google Scholar 

  8. Chen M, David CJ, Manley JL (2012) Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nat Struct Mol Biol 19:346–354. https://doi.org/10.1038/nsmb.2219

    Article  PubMed  PubMed Central  Google Scholar 

  9. Romero-Ramírez L, García-Rama C, Wu S, Mey J (2022) Bile acids attenuate PKM2 pathway activation in proinflammatory microglia. Sci Rep 12:1459. https://doi.org/10.1038/s41598-022-05408-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davidson SM, Schmidt DR, Heyman JE, O’Brien JP, Liu AC, Israelsen WJ, Dayton TL, Sehgal R et al (2022) Pyruvate kinase M1 suppresses development and progression of prostate adenocarcinoma. Cancer Res 82:2403–2416. https://doi.org/10.1158/0008-5472.Can-21-2352

    Article  PubMed  PubMed Central  Google Scholar 

  11. Takenaka M, Noguchi T, Sadahiro S, Hirai H, Yamada K, Matsuda T, Imai E, Tanaka T (1991) Isolation and characterization of the human pyruvate kinase M gene. Eur J Biochem 198:101–106. https://doi.org/10.1111/j.1432-1033.1991.tb15991.x

    Article  PubMed  Google Scholar 

  12. Nayak MK, Ghatge M, Flora GD, Dhanesha N, Jain M, Markan KR, Potthoff MJ, Lentz SR et al (2021) The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood 137:1658–1668. https://doi.org/10.1182/blood.2020007140

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gupta V, Bamezai RN (2010) Human pyruvate kinase M2: a multifunctional protein. Protein Sci 19:2031–2044. https://doi.org/10.1002/pro.505

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ding Z, Da HH, Osama A, Xi J, Hou Y, Fang J (2022) Emodin ameliorates antioxidant capacity and exerts neuroprotective effect via PKM2-mediated Nrf2 transactivation. Food Chem Toxicol 160:112790. https://doi.org/10.1016/j.fct.2021.112790

    Article  PubMed  Google Scholar 

  15. Gao J, Zhao Y, Li T, Gan X, Yu H (2022) The role of PKM2 in the regulation of mitochondrial function: focus on mitochondrial metabolism, oxidative stress, dynamic, and apoptosis. PKM2 in Mitochondrial Function. Oxid Med Cell Longev 2022:7702681. https://doi.org/10.1155/2022/7702681

    Article  PubMed  PubMed Central  Google Scholar 

  16. Traxler L, Herdy JR, Stefanoni D, Eichhorner S, Pelucchi S, Szücs A, Santagostino A, Kim Y et al (2022) Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer’s disease. Cell Metab 34:1248-1263.e6. https://doi.org/10.1016/j.cmet.2022.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dhanesha N, Patel RB, Doddapattar P, Ghatge M, Flora GD, Jain M, Thedens D, Olalde H et al (2022) PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke. Blood 139:1234–1245. https://doi.org/10.1182/blood.2021012322

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qin S, Yang D, Chen K, Li H, Zhang L, Li Y, Le R, Li X et al (2017) Pkm2 can enhance pluripotency in ESCs and promote somatic cell reprogramming to iPSCs. Oncotarget 8:84276–84284. https://doi.org/10.18632/oncotarget.20685

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li D, Shen C, Liu L, Hu J, Qin J, Dai L, Gao L, Cheng M et al (2022) PKM2 regulates cigarette smoke-induced airway inflammation and epithelial-to-mesenchymal transition via modulating PINK1/Parkin-mediated mitophagy. Toxicology 477:153251. https://doi.org/10.1016/j.tox.2022.153251

    Article  PubMed  Google Scholar 

  20. Tech K, Tikunov AP, Farooq H, Morrissy AS, Meidinger J, Fish T, Green SC, Liu H et al (2017) Pyruvate kinase inhibits proliferation during postnatal cerebellar neurogenesis and suppresses medulloblastoma formation. Cancer Res 77:3217–3230. https://doi.org/10.1158/0008-5472.Can-16-3304

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alves-Filho JC, Pålsson-McDermott EM (2016) Pyruvate kinase M2: a potential target for regulating inflammation. Front Immunol 7:145. https://doi.org/10.3389/fimmu.2016.00145

    Article  PubMed  PubMed Central  Google Scholar 

  22. Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A (2021) The role of PKM2 in metabolic reprogramming: insights into the regulatory roles of non-Coding RNAs. Int J Mol Sci 22(3):1171. https://doi.org/10.3390/ijms22031171

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li M, Lu H, Wang X, Duan C, Zhu X, Zhang Y, Ge X, Ji F et al (2021) Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia. Mol Immunol 140:250–266. https://doi.org/10.1016/j.molimm.2021.10.017

    Article  PubMed  Google Scholar 

  24. Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X et al (2022) Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci 18:6210–6225. https://doi.org/10.7150/ijbs.75434

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng S, Liu Q, Liu T, Lu X (2021) Posttranslational modification of pyruvate kinase type M2 (PKM2): novel regulation of its biological roles to be further discovered. J Physiol Biochem 77:355–363. https://doi.org/10.1007/s13105-021-00813-0

    Article  PubMed  Google Scholar 

  26. Zahra K, Dey T, Ashish MSP, Pandey U (2020) Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol 10:159. https://doi.org/10.3389/fonc.2020.00159

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F (2019) PKM2, function and expression and regulation. Cell Biosci 9:52. https://doi.org/10.1186/s13578-019-0317-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö, Chen J, Zhao JJ, Songyang Z et al (2018) Oncogenic kinase-induced PKM2 tyrosine 105 phosphorylation converts nononcogenic PKM2 to a tumor promoter and induces cancer stem-like cells. Cancer Res 78:2248–2261. https://doi.org/10.1158/0008-5472.Can-17-2726

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH et al (2017) Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 23:753–762. https://doi.org/10.1038/nm.4328

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu X, Liu L, Zheng Q, Hao H, Ye H, Li P, Yang H (2021) Protocatechuic aldehyde protects cardiomycoytes against ischemic injury via regulation of nuclear pyruvate kinase M2. Acta Pharm Sin B 11:3553–3566. https://doi.org/10.1016/j.apsb.2021.03.021

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, Xu Y, Zhou L et al (2017) SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep 19:2331–2344. https://doi.org/10.1016/j.celrep.2017.05.065

    Article  PubMed  Google Scholar 

  32. Gao J, Yao M, Zhang W, Yang B, Yuan G, Liu JX, Zhang Y (2022) Panax notoginseng saponins alleviates inflammation induced by microglial activation and protects against ischemic brain injury via inhibiting HIF-1α/PKM2/STAT3 signaling. Biomed Pharmacother 155:113479. https://doi.org/10.1016/j.biopha.2022.113479

    Article  PubMed  Google Scholar 

  33. Wong N, De Melo J, Tang D (2013) PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol 2013:242513. https://doi.org/10.1155/2013/242513

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu Z, Le Y, Chen H, Zhu J, Lu D (2021) Role of PKM2-mediated immunometabolic reprogramming on development of cytokine storm. Front Immunol 12:748573. https://doi.org/10.3389/fimmu.2021.748573

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY et al (2012) EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell 48:771–784. https://doi.org/10.1016/j.molcel.2012.09.028

    Article  PubMed  PubMed Central  Google Scholar 

  36. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85. https://doi.org/10.1016/j.ccr.2004.11.022

    Article  PubMed  Google Scholar 

  37. Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, Manvati S, Chaman N et al (2013) Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol Cancer 12:72. https://doi.org/10.1186/1476-4598-12-72

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y et al (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci U S A 108:4129–4134. https://doi.org/10.1073/pnas.1014769108

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Han X, Fu M, Wang J, Song Y, Liu Y, Zhang J, Zhou J et al (2018) Qiliqiangxin attenuates hypoxia-induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF-1α-dependent glycolysis. J Cell Mol Med 22:2791–2803. https://doi.org/10.1111/jcmm.13572

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen D, Wei L, Liu ZR, Yang JJ, Gu X, Wei ZZ, Liu LP, Yu SP (2018) Pyruvate kinase M2 increases angiogenesis, neurogenesis, and functional recovery mediated by upregulation of STAT3 and focal adhesion kinase activities after ischemic stroke in adult mice. Neurotherapeutics 15:770–784. https://doi.org/10.1007/s13311-018-0635-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu M, Zhou P (2023) Effect and mechanism of atorvastatin on reversing drug resistance in leukemia by regulating glycolysis through PTEN/mTOR pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi 31:38–44. https://doi.org/10.19746/j.cnki.issn.1009-2137.2023.01.006

    Article  PubMed  Google Scholar 

  42. Jia C, Zhao Y, Huang H, Fan K, Xie T, Xie M (2022) Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 107:109038. https://doi.org/10.1016/j.jnutbio.2022.109038

    Article  PubMed  Google Scholar 

  43. Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, Chung DH, Choi J et al (2015) Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells 33:2699–2711. https://doi.org/10.1002/stem.2073

    Article  PubMed  Google Scholar 

  44. Shimauchi T, Boucherat O, Yokokawa T, Grobs Y, Wu W, Orcholski M, Martineau S, Omura J et al (2022) PARP1-PKM2 axis mediates right ventricular failure associated with pulmonary arterial hypertension. JACC Basic Transl Sci 7:384–403. https://doi.org/10.1016/j.jacbts.2022.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  45. Panasyuk G, Espeillac C, Chauvin C, Pradelli LA, Horie Y, Suzuki A, Annicotte JS, Fajas L et al (2012) PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nat Commun 3:672. https://doi.org/10.1038/ncomms1667

    Article  PubMed  Google Scholar 

  46. Ouyang X, Han Y, Qu G, Li M, Wu N, Liu H, Arojo O, Sun H et al (2019) Metabolic regulation of T cell development by Sin1-mTORC2 is mediated by pyruvate kinase M2. J Mol Cell Biol 11:93–106. https://doi.org/10.1093/jmcb/mjy065

    Article  PubMed  Google Scholar 

  47. Zhou Q, Xu J, Liu M, He L, Zhang K, Yang Y, Yang X, Zhou H et al (2019) Warburg effect is involved in apelin-13-induced human aortic vascular smooth muscle cells proliferation. J Cell Physiol 234:14413–14421. https://doi.org/10.1002/jcp.28218

    Article  PubMed  Google Scholar 

  48. Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, Ito Y, Soga T, Akao Y (2018) SRSF3, a splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells. Int J Mol Sci 19(10):3012. https://doi.org/10.3390/ijms19103012

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang H, Zhu R, Zhao X, Liu L, Zhou Z, Zhao L, Liang B, Ma W et al (2019) Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 38:4915–4931. https://doi.org/10.1038/s41388-019-0764-z

    Article  PubMed  Google Scholar 

  50. Jia Y, Mao C, Ma Z, Huang J, Li W, Ma X, Zhang S, Li M et al (2022) PHB2 maintains the contractile phenotype of VSMCs by counteracting PKM2 splicing. Circ Res 131:807–824. https://doi.org/10.1161/circresaha.122.321005

    Article  PubMed  Google Scholar 

  51. Zhao W, Li M, Wang S, Li Z, Li H, Li S (2023) CircRNA SRRM4 affects glucose metabolism by regulating PKM alternative splicing via SRSF3 deubiquitination in epilepsy. Neuropathol Appl Neurobiol 49:e12850. https://doi.org/10.1111/nan.12850

    Article  PubMed  Google Scholar 

  52. Zhang H, Wang D, Li M, Plecitá-Hlavatá L, D’Alessandro A, Tauber J, Riddle S, Kumar S et al (2017) Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a MicroRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. Circulation 136:2468–2485. https://doi.org/10.1161/circulationaha.117.028069

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Shao F, Yu J, Jiang H, Gong D, Gu Z (2015) MicroRNA-122 targets genes related to liver metabolism in chickens. Comp Biochem Physiol B Biochem Mol Biol 184:29–35. https://doi.org/10.1016/j.cbpb.2015.02.002

    Article  PubMed  Google Scholar 

  54. Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H et al (2017) Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation 136:2451–2467. https://doi.org/10.1161/circulationaha.117.028034

    Article  PubMed  PubMed Central  Google Scholar 

  55. Su CH, Hung KY, Hung SC, Tarn WY (2017) RBM4 Regulates neuronal differentiation of mesenchymal stem cells by modulating alternative splicing of Pyruvate Kinase M. Mol Cell Biol 37(3):e00466-16. https://doi.org/10.1128/MCB.00466-16

    Article  PubMed  PubMed Central  Google Scholar 

  56. Konno M, Koseki J, Kawamoto K, Nishida N, Matsui H, Dewi DL, Ozaki M, Noguchi Y et al (2015) Embryonic MicroRNA-369 controls metabolic splicing factors and urges cellular reprograming. PLoS ONE 10:e0132789. https://doi.org/10.1371/journal.pone.0132789

    Article  PubMed  PubMed Central  Google Scholar 

  57. Salama SA, Mohammad MA, Diaz-Arrastia CR, Kamel MW, Kilic GS, Ndofor BT, Abdel-Baki MS, Theiler SK (2014) Estradiol-17β upregulates pyruvate kinase M2 expression to coactivate estrogen receptor-α and to integrate metabolic reprogramming with the mitogenic response in endometrial cells. J Clin Endocrinol Metab 99:3790–3799. https://doi.org/10.1210/jc.2013-2639

    Article  PubMed  Google Scholar 

  58. Liu X, Zhu Q, Guo Y, Xiao Z, Hu L, Xu Q (2019) LncRNA LINC00689 promotes the growth, metastasis and glycolysis of glioma cells by targeting miR-338-3p/PKM2 axis. Biomed Pharmacother 117:109069. https://doi.org/10.1016/j.biopha.2019.109069

    Article  PubMed  Google Scholar 

  59. Li Q, Pan X, Zhu D, Deng Z, Jiang R, Wang X (2019) Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology 70:1298–1316. https://doi.org/10.1002/hep.30671

    Article  PubMed  Google Scholar 

  60. Nakao K, Miyaaki H, Ichikawa T (2014) Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol 49:589–593. https://doi.org/10.1007/s00535-014-0932-4

    Article  PubMed  Google Scholar 

  61. Cao J, Huo P, Cui K, Wei H, Cao J, Wang J, Liu Q, Lei X et al (2022) Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal 20:61. https://doi.org/10.1186/s12964-022-00876-6

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zeng X, Liu N, Zhang J, Wang L, Zhang Z, Zhu J, Li Q, Wang Y (2017) Inhibition of miR-143 during ischemia cerebral injury protects neurones through recovery of the hexokinase 2-mediated glucose uptake. Biosci Rep 37 10.1042/bsr20170216

  63. Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L (2019) Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett 24:37. https://doi.org/10.1186/s11658-019-0160-2

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cao Y, Guo WT, Tian S, He X, Wang XW, Liu X, Gu KL, Ma X et al (2015) miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. Embo j 34:609–623. https://doi.org/10.15252/embj.201490441

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ni S, Yang B, Xia L, Zhang H (2021) EZH2 mediates miR-146a-5p/HIF-1α to alleviate inflammation and glycolysis after acute spinal cord injury. Mediators Inflamm 2021:5591582. https://doi.org/10.1155/2021/5591582

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang B, Liu S, Fan B, Xu X, Chen Y, Lu R, Xu Z, Liu X (2018) PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. J Headache Pain 19:7. https://doi.org/10.1186/s10194-018-0836-4

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tokuda K, Baron B, Yamashiro C, Kuramitsu Y, Kitagawa T, Kobayashi M, Sonoda KH, Kimura K (2020) Up-regulation of the pentose phosphate pathway and HIF-1α expression during neural progenitor cell induction following glutamate treatment in rat ex vivo retina. Cell Biol Int 44:137–144. https://doi.org/10.1002/cbin.11212

    Article  PubMed  Google Scholar 

  69. Mazurek S, Zwerschke W, Jansen-Dürr P, Eigenbrodt E (2001) Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J 356:247–256. https://doi.org/10.1042/0264-6021:3560247

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu C, Liu C, Fu R (2022) Research progress on the role of PKM2 in the immune response. Front Immunol 13:936967. https://doi.org/10.3389/fimmu.2022.936967

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL (1998) The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6:195–210. https://doi.org/10.1016/s0969-2126(98)00021-5

    Article  PubMed  Google Scholar 

  72. Srivastava D, Razzaghi M, Henzl MT, Dey M (2017) Structural investigation of a dimeric variant of pyruvate kinase muscle isoform 2. Biochemistry 56:6517–6520. https://doi.org/10.1021/acs.biochem.7b01013

    Article  PubMed  Google Scholar 

  73. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T et al (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696. https://doi.org/10.1016/j.cell.2012.07.018

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707. https://doi.org/10.1016/j.cell.2008.08.021

    Article  PubMed  Google Scholar 

  75. O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355. https://doi.org/10.1038/nature11862

    Article  PubMed  Google Scholar 

  76. Wen H, Ting JP, O’Neill LA (2012) A role for the NLRP3 inflammasome in metabolic diseases–did Warburg miss inflammation? Nat Immunol 13:352–357. https://doi.org/10.1038/ni.2228

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13:907–915. https://doi.org/10.1038/ni.2386

    Article  PubMed  Google Scholar 

  78. Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, Kang R, Lotze MT et al (2014) PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun 5:4436. https://doi.org/10.1038/ncomms5436

    Article  PubMed  Google Scholar 

  79. Yang J, Liu H, Liu X, Gu C, Luo R, Chen HF (2016) Synergistic allosteric mechanism of fructose-1,6-bisphosphate and serine for pyruvate kinase M2 via dynamics fluctuation network analysis. J Chem Inf Model 56:1184–1192. https://doi.org/10.1021/acs.jcim.6b00115

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nandi S, Dey M (2023) Identification of residues involved in allosteric signal transmission from amino acid binding site of pyruvate kinase muscle isoform 2. PLoS ONE 18:e0282508. https://doi.org/10.1371/journal.pone.0282508

    Article  PubMed  PubMed Central  Google Scholar 

  81. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186. https://doi.org/10.1038/nature06667

    Article  PubMed  Google Scholar 

  82. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR et al (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21:65–80. https://doi.org/10.1016/j.cmet.2014.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S, Zen K (2018) Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci Rep 8:14517. https://doi.org/10.1038/s41598-018-31615-y

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bolaños JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139(2):115–125. https://doi.org/10.1111/jnc.13486

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Ma L, Hamm M, Gage FH, Hunter T (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5:e13374. https://doi.org/10.7554/eLife.13374

  86. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

    Article  PubMed  Google Scholar 

  87. Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Park MK, Lee SH, Lee CJ, Yang HW, Woo SY, Park SW, Kim DY, Park JB, Chung WS, Suh SW (2023) Effects of Pyruvate Kinase M2 (PKM2) gene deletion on astrocyte-specific glycolysis and global cerebral Ischemia-Induced neuronal death. Antioxidants (Basel, Switzerland) 12(2):491. https://doi.org/10.3390/antiox12020491

    Article  PubMed  Google Scholar 

  88. Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM (2019) Energy dynamics in the brain: contributions of astrocytes to metabolism and pH homeostasis. Front Neurosci 13:1301. https://doi.org/10.3389/fnins.2019.01301

    Article  PubMed  PubMed Central  Google Scholar 

  89. Deck M, Van Hameren G, Campbell G, Bernard-Marissal N, Devaux J, Berthelot J, Lattard A, Médard JJ et al (2022) Physiology of PNS axons relies on glycolytic metabolism in myelinating Schwann cells. PLoS ONE 17:e0272097. https://doi.org/10.1371/journal.pone.0272097

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G, Allaman I, Magistretti PJ (2014) Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A 111:12228–12233. https://doi.org/10.1073/pnas.1322912111

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhou Q, Tang M, He L, Chen S (2020) PKM2: a crucial neuroprotective target against oxidative stress. Acta Biochim Biophys Sin (Shanghai) 52:1432–1434. https://doi.org/10.1093/abbs/gmaa121

    Article  PubMed  Google Scholar 

  92. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851. https://doi.org/10.1126/science.1115035

    Article  PubMed  PubMed Central  Google Scholar 

  93. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. https://doi.org/10.1038/nrm2308

    Article  PubMed  Google Scholar 

  94. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN (2018) Reprogramming energetic metabolism in Alzheimer’s disease. Life Sci 193:141–152. https://doi.org/10.1016/j.lfs.2017.10.033

    Article  PubMed  Google Scholar 

  95. Gao X, Wang H, Yang JJ, Chen J, Jie J, Li L, Zhang Y, Liu ZR (2013) Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals. J Biol Chem 288:15971–15979. https://doi.org/10.1074/jbc.M112.448753

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhou J, Rasmussen M, Ekström P (2023) A potential neuroprotective role for pyruvate kinase 2 in retinal degeneration. Adv Exp Med Biol 1415:479–483. https://doi.org/10.1007/978-3-031-27681-1_70

    Article  PubMed  Google Scholar 

  97. Zhao J, Wang G, Han K, Wang Y, Wang L, Gao J, Zhao S, Wang G et al (2022) Mitochondrial PKM2 deacetylation by procyanidin B2-induced SIRT3 upregulation alleviates lung ischemia/reperfusion injury. Cell Death Dis 13:594. https://doi.org/10.1038/s41419-022-05051-w

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhao Y, Wang Y, Wu Y, Tao C, Xu R, Chen Y, Qian L, Xu T et al (2023) PKM2-mediated neuronal hyperglycolysis enhances the risk of Parkinson’s disease in diabetic rats. J Pharm Anal 13:187–200. https://doi.org/10.1016/j.jpha.2022.11.006

    Article  PubMed  Google Scholar 

  99. Wu Q, Ge W, Chen Y, Kong X, Xian H (2019) PKM2 involved in neuronal apoptosis on hypoxic-ischemic encephalopathy in neonatal rats. Neurochem Res 44:1602–1612. https://doi.org/10.1007/s11064-019-02784-7

    Article  PubMed  Google Scholar 

  100. Fang Y, Zhao T, Ni H, Li Y, Zhu Y, Gao R, Zhang L, Jia Z et al (2023) USP11 exacerbates neuronal apoptosis after traumatic brain injury via PKM2-mediated PI3K/AKT signaling pathway. Brain Res 1807:148321. https://doi.org/10.1016/j.brainres.2023.148321

    Article  PubMed  Google Scholar 

  101. Bao F, Kang X, Xie Q, Wu J (2019) HIF-α/PKM2 and PI3K-AKT pathways involved in the protection by dexmedetomidine against isoflurane or bupivacaine-induced apoptosis in hippocampal neuronal HT22 cells. Exp Ther Med 17:63–70. https://doi.org/10.3892/etm.2018.6956

    Article  PubMed  Google Scholar 

  102. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, Zhu Z, Zhang J (2017) PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep 7:2886. https://doi.org/10.1038/s41598-017-03031-1

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gu R, Liu R, Wang L, Tang M, Li SR, Hu X (2021) LncRNA RPPH1 attenuates Aβ(25–35)-induced endoplasmic reticulum stress and apoptosis in SH-SY5Y cells via miR-326/PKM2. Int J Neurosci 131:425–432. https://doi.org/10.1080/00207454.2020.1746307

    Article  PubMed  Google Scholar 

  104. Inoue M, Hada K, Shiraishi H, Yatsuka H, Fujinami H, Morisaki I, Nishida Y, Matsubara E et al (2020) Tyrosine pre-transfer RNA fragments are linked to p53-dependent neuronal cell death via PKM2. Biochem Biophys Res Commun 525:726–732. https://doi.org/10.1016/j.bbrc.2020.02.157

    Article  PubMed  Google Scholar 

  105. Martin GS (2003) Cell signaling and cancer. Cancer Cell 4:167–174. https://doi.org/10.1016/s1535-6108(03)00216-2

    Article  PubMed  Google Scholar 

  106. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  PubMed  Google Scholar 

  107. Li H, Zhong Y, Cao G, Shi H, Liu Y, Li L, Yin P, Chen J et al (2022) METTL3 promotes cell cycle progression via m(6)A/YTHDF1-dependent regulation of CDC25B translation. Int J Biol Sci 18:3223–3236. https://doi.org/10.7150/ijbs.70335

    Article  PubMed  PubMed Central  Google Scholar 

  108. Israels ED, Israels LG (2001) The cell cycle. Stem Cells 19:88–91. https://doi.org/10.1634/stemcells.19-1-88

    Article  PubMed  Google Scholar 

  109. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, Ogrodzinski M, Hecht V et al (2015) Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell 57:95–107. https://doi.org/10.1016/j.molcel.2014.10.027

    Article  PubMed  Google Scholar 

  110. Qiao H, He X, Zhang Q, Yuan H, Wang D, Li L, Hui Y, Wu Z et al (2019) Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int J Biol Macromol 129:601–607. https://doi.org/10.1016/j.ijbiomac.2019.02.029

    Article  PubMed  Google Scholar 

  111. Zhang J, Feng G, Bao G, Xu G, Sun Y, Li W, Wang L, Chen J et al (2015) Nuclear translocation of PKM2 modulates astrocyte proliferation via p27 and -catenin pathway after spinal cord injury. Cell Cycle 14:2609–2618. https://doi.org/10.1080/15384101.2015.1064203

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lu L, Wang H, Liu X, Tan L, Qiao X, Ni J, Sun Y, Liang J et al (2021) Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. J Neuroinflammation 18:229. https://doi.org/10.1186/s12974-021-02279-9

    Article  PubMed  PubMed Central  Google Scholar 

  113. Roué G, Pichereau V, Lincet H, Colomer D, Sola B (2008) Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators. Oncogene 27:4909–4920. https://doi.org/10.1038/onc.2008.126

    Article  PubMed  Google Scholar 

  114. Schoenebeck B, Bader V, Zhu XR, Schmitz B, Lübbert H, Stichel CC (2005) Sgk1, a cell survival response in neurodegenerative diseases. Mol Cell Neurosci 30:249–264. https://doi.org/10.1016/j.mcn.2005.07.017

    Article  PubMed  Google Scholar 

  115. Thompson EB (1998) The many roles of c-Myc in apoptosis. Annu Rev Physiol 60:575–600. https://doi.org/10.1146/annurev.physiol.60.1.575

    Article  PubMed  Google Scholar 

  116. Zhang A, Yu F, Yu W, Ye P, Liu P, Gu Y, Chen S, Zhang H (2020) Pyruvate kinase M2 activation protects against the proliferation and migration of pulmonary artery smooth muscle cells. Cell Tissue Res 382:585–598. https://doi.org/10.1007/s00441-020-03245-2

    Article  PubMed  Google Scholar 

  117. Feng Y, Li X, Wang J, Huang X, Meng L, Huang J (2022) Pyruvate kinase M2 (PKM2) improve symptoms of post-ischemic stroke depression by activating VEGF to mediate the MAPK/ERK pathway. Brain Behav 12:e2450. https://doi.org/10.1002/brb3.2450

    Article  PubMed  Google Scholar 

  118. Theis V, Theiss C (2018) VEGF - a stimulus for neuronal development and regeneration in the CNS and PNS. Curr Protein Pept Sci 19:589–597. https://doi.org/10.2174/1389203719666180104113937

    Article  PubMed  Google Scholar 

  119. Zohrabian VM, Forzani B, Chau Z, Murali R, Jhanwar-Uniyal M (2009) Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res 29:119–123

    PubMed  Google Scholar 

  120. Kodani A, Kikuchi T, Tohda C (2019) Acteoside improves muscle atrophy and motor function by inducing new myokine secretion in chronic spinal cord injury. J Neurotrauma 36:1935–1948. https://doi.org/10.1089/neu.2018.6000

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kikuchi T, Tohda C, Suyama M (2020) Recovery of motor function of chronic spinal cord injury by extracellular pyruvate kinase isoform M2 and the underlying mechanism. Sci Rep 10:19475. https://doi.org/10.1038/s41598-020-76629-7

    Article  PubMed  PubMed Central  Google Scholar 

  122. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E et al (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–4749. https://doi.org/10.1182/blood-2009-10-249540

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bian L, Zhou Y, Zhang D, Jiang T, Xing C, Wu X, Wang T, Zhu X (2023) Negative correlation between serum pyruvate kinase M2 and cognitive function in patients with cerebral small vessel disease. Clin Neurol Neurosurg 225:107586. https://doi.org/10.1016/j.clineuro.2023.107586

    Article  PubMed  Google Scholar 

  124. Corcoran SE, O’Neill LA (2016) HIF1α and metabolic reprogramming in inflammation. J Clin Invest 126:3699–3707. https://doi.org/10.1172/jci84431

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhang X, Yang Y, Jing L, Zhai W, Zhang H, Ma Q, Li C, Yan F et al (2021) Pyruvate kinase M2 contributes to TLR-mediated inflammation and autoimmunity by promoting Pyk2 activation. Front Immunol 12:680068. https://doi.org/10.3389/fimmu.2021.680068

    Article  PubMed  PubMed Central  Google Scholar 

  126. O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13:453–460. https://doi.org/10.1038/nri3446

    Article  PubMed  Google Scholar 

  127. McGarry T, Biniecka M, Gao W, Cluxton D, Canavan M, Wade S, Wade S, Gallagher L et al (2017) Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in rheumatoid arthritis. Sci Rep 7:43165. https://doi.org/10.1038/srep43165

    Article  PubMed  PubMed Central  Google Scholar 

  128. Das Gupta K, Shakespear MR, Curson JEB, Murthy AMV, Iyer A, Hodson MP, Ramnath D, Tillu VA et al (2020) Class IIa histone deacetylases drive toll-like receptor-inducible glycolysis and macrophage inflammatory responses via pyruvate kinase M2. Cell Rep 30:2712-2728.e8. https://doi.org/10.1016/j.celrep.2020.02.007

    Article  PubMed  Google Scholar 

  129. Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ (2011) Histone deacetylases as regulators of inflammation and immunity. Trends Immunol 32:335–343. https://doi.org/10.1016/j.it.2011.04.001

    Article  PubMed  Google Scholar 

  130. Li M, Lu W, Meng Y, Zhang W, Wang F, Sun L, Xu Y (2022) Tetrahydroxy stilbene glucoside alleviates ischemic stroke by regulating conformation-dependent intracellular distribution of PKM2 for M2 macrophage polarization. J Agric Food Chem 70:15449–15463. https://doi.org/10.1021/acs.jafc.2c03923

    Article  PubMed  Google Scholar 

  131. Chen Q, Shao X, He Y, Lu E, Zhu L, Tang W (2021) Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol Pharm Bull 44:1536–1547. https://doi.org/10.1248/bpb.b21-00457

    Article  PubMed  Google Scholar 

  132. Rao J, Wang H, Ni M, Wang Z, Wang Z, Wei S, Liu M, Wang P et al (2022) FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut 71:2539–2550. https://doi.org/10.1136/gutjnl-2021-325150

    Article  PubMed  Google Scholar 

  133. Huang J, Liu K, Zhu S, Xie M, Kang R, Cao L, Tang D (2018) AMPK regulates immunometabolism in sepsis. Brain Behav Immun 72:89–100. https://doi.org/10.1016/j.bbi.2017.11.003

    Article  PubMed  Google Scholar 

  134. Latham T, Mackay L, Sproul D, Karim M, Culley J, Harrison DJ, Hayward L, Langridge-Smith P et al (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res 40:4794–4803. https://doi.org/10.1093/nar/gks066

    Article  PubMed  PubMed Central  Google Scholar 

  135. Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, Sun X, Yang M et al (2016) PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun 7:13280. https://doi.org/10.1038/ncomms13280

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ying ZH, Li HM, Yu WY, Yu CH (2021) Iridin prevented against lipopolysaccharide-induced inflammatory responses of macrophages via inactivation of PKM2-mediated glycolytic pathways. J Inflamm Res 14:341–354. https://doi.org/10.2147/jir.S292244

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhang B, Shen J, Zhong Z, Zhang L (2021) PKM2 aggravates cerebral ischemia reperfusion-induced neuroinflammation via TLR4/MyD88/TRAF6 signaling pathway. NeuroImmunoModulation 28:29–37. https://doi.org/10.1159/000509710

    Article  PubMed  Google Scholar 

  138. Byrd-Leifer CA, Block EF, Takeda K, Akira S, Ding A (2001) The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol 31:2448–2457. https://doi.org/10.1002/1521-4141(200108)31:8%3c2448::aid-immu2448%3e3.0.co;2-n

    Article  PubMed  Google Scholar 

  139. Gao CL, Hou GG, Liu J, Ru T, Xu YZ, Zhao SY, Ye H, Zhang LY et al (2020) Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke. Angew Chem Int Ed Engl 59:2429–2439. https://doi.org/10.1002/anie.201912489

    Article  PubMed  Google Scholar 

  140. Penas C, Navarro X (2018) Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 12:158. https://doi.org/10.3389/fncel.2018.00158

    Article  PubMed  PubMed Central  Google Scholar 

  141. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. https://doi.org/10.1038/nrn3722

    Article  PubMed  Google Scholar 

  142. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665. https://doi.org/10.1111/bph.13139

    Article  PubMed  Google Scholar 

  143. Shen H, Pei H, Zhai L, Guan Q, Wang G (2022) Salvianolic acid C improves cerebral ischemia reperfusion injury through suppressing microglial cell M1 polarization and promoting cerebral angiogenesis. Int Immunopharmacol 110:109021. https://doi.org/10.1016/j.intimp.2022.109021

    Article  PubMed  Google Scholar 

  144. Zhai L, Ruan S, Wang J, Guan Q, Zha L (2023) NADPH oxidase 4 regulate the glycolytic metabolic reprogramming of microglial cells to promote M1 polarization. J Biochem Mol Toxicol 37:e23318. https://doi.org/10.1002/jbt.23318

    Article  PubMed  Google Scholar 

  145. Andersson AK, Rönnbäck L, Hansson E (2005) Lactate induces tumour necrosis factor-alpha, interleukin-6 and interleukin-1beta release in microglial- and astroglial-enriched primary cultures. J Neurochem 93:1327–1333. https://doi.org/10.1111/j.1471-4159.2005.03132.x

    Article  PubMed  Google Scholar 

  146. Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, Jiang Y, Zhou X et al (2013) Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 52:340–352. https://doi.org/10.1016/j.molcel.2013.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  147. Li X, Zhou R, Peng H, Peng J, Li Q, Mei M (2023) Microglia PKM2 Mediates neuroinflammation and neuron loss in mice epilepsy through the astrocyte C3-Neuron C3R signaling pathway. Brain Sci 13(2):262. https://doi.org/10.3390/brainsci13020262

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wang L, Wang FS, Gershwin ME (2015) Human autoimmune diseases: a comprehensive update. J Intern Med 278:369–395. https://doi.org/10.1111/joim.12395

    Article  PubMed  Google Scholar 

  149. Mathis D, Shoelson SE (2011) Immunometabolism: an emerging frontier. Nat Rev Immunol 11:81. https://doi.org/10.1038/nri2922

    Article  PubMed  PubMed Central  Google Scholar 

  150. Li XJ, Xu M, Zhao XQ, Zhao JN, Chen FF, Yu W, Gao DY, Luo B (2013) Proteomic analysis of synovial fibroblast-like synoviocytes from rheumatoid arthritis. Clin Exp Rheumatol 31:552–558

    PubMed  Google Scholar 

  151. Chung-Faye G, Hayee B, Maestranzi S, Donaldson N, Forgacs I, Sherwood R (2007) Fecal M2-pyruvate kinase (M2-PK): a novel marker of intestinal inflammation. Inflamm Bowel Dis 13:1374–1378. https://doi.org/10.1002/ibd.20214

    Article  PubMed  Google Scholar 

  152. Liu D, Xiao Y, Zhou B, Gao S, Li L, Zhao L, Chen W, Dai B et al (2021) PKM2-dependent glycolysis promotes skeletal muscle cell pyroptosis by activating the NLRP3 inflammasome in dermatomyositis/polymyositis. Rheumatology (Oxford) 60:2177–2189. https://doi.org/10.1093/rheumatology/keaa473

    Article  PubMed  Google Scholar 

  153. Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, Kane H, Papadopoulou G et al (2020) Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity. Cell Metab 31:391-405.e8. https://doi.org/10.1016/j.cmet.2019.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112:1557–1569. https://doi.org/10.1182/blood-2008-05-078154

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kono M, Maeda K, Stocton-Gavanescu I, Pan W, Umeda M, Katsuyama E, Burbano C, Orite SYK, Vukelic M, Tsokos MG, Yoshida N, Tsokos GC (2019) Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI insight 4(12):e127395. https://doi.org/10.1172/jci.insight.127395

  156. Liu Z, Xu J, Li H, Shu J, Su G, Zhou C, Yang P (2022) PD-1 targeted nanoparticles inhibit activated T cells and alleviate autoimmunity via suppression of cellular energy metabolism mediated by PKM2. Int J Nanomedicine 17:1711–1724. https://doi.org/10.2147/ijn.S349360

    Article  PubMed  PubMed Central  Google Scholar 

  157. Mosure SA, Solt LA (2021) Uncovering new challenges in targeting glycolysis to treat Th17 cell-mediated autoimmunity. Immunometabolism 3(1):e210006. https://doi.org/10.20900/immunometab20210006

  158. Jin X, Zhang W, Wang Y, Liu J, Hao F, Li Y, Tian M, Shu H et al (2020) Pyruvate kinase M2 promotes the activation of dendritic cells by enhancing IL-12p35 expression. Cell Rep 31:107690. https://doi.org/10.1016/j.celrep.2020.107690

    Article  PubMed  Google Scholar 

  159. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296. https://doi.org/10.1146/annurev.iy.09.040191.001415

    Article  PubMed  Google Scholar 

  160. Duan X, Wen Z, Shen H, Shen M, Chen G (2016) Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxid Med Cell Longev 2016:1203285. https://doi.org/10.1155/2016/1203285

    Article  PubMed  PubMed Central  Google Scholar 

  161. Peres BU, Allen AJH, Shah A, Fox N, Laher I, Almeida F, Jen R, Ayas N (2020) Obstructive sleep apnea and circulating biomarkers of oxidative stress: a cross-sectional study. Antioxidants 9:476. https://doi.org/10.3390/antiox9060476

    Article  PubMed  PubMed Central  Google Scholar 

  162. Khan N, Lambert-Messerlian G, Monteiro JF, Hodosy J, Tothova L, Celec P, Eklund E, Curran P et al (2018) Oxidative and carbonyl stress in pregnant women with obstructive sleep apnea. Sleep and Breathing 22:233–240. https://doi.org/10.1007/s11325-017-1475-8

    Article  PubMed  Google Scholar 

  163. Zhu P, Yang Q, Li G, Chang Q (2021) PKM2 is a potential diagnostic and therapeutic target for retinitis pigmentosa. Dis Markers 2021:1602797. https://doi.org/10.1155/2021/1602797

    Article  PubMed  PubMed Central  Google Scholar 

  164. Siragusa M, Thöle J, Bibli SI, Luck B, Loot AE, de Silva K, Wittig I, Heidler J et al (2019) Nitric oxide maintains endothelial redox homeostasis through PKM2 inhibition. Embo j 38:e100938. https://doi.org/10.15252/embj.2018100938

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wang C, Chao Y, Xu W, Liu Z, Wang H, Huang K (2020) Myeloid FBW7 deficiency disrupts redox homeostasis and aggravates dietary-induced insulin resistance. Redox Biol 37:101688. https://doi.org/10.1016/j.redox.2020.101688

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yang H, Zhu Y, Ye Y, Guan J, Min X, Xiong H (2022) Nitric oxide protects against cochlear hair cell damage and noise-induced hearing loss through glucose metabolic reprogramming. Free Radic Biol Med 179:229–241. https://doi.org/10.1016/j.freeradbiomed.2021.11.020

    Article  PubMed  Google Scholar 

  167. Magadum A, Singh N, Kurian AA, Munir I, Mehmood T, Brown K, Sharkar MTK, Chepurko E et al (2020) Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation 141:1249–1265. https://doi.org/10.1161/circulationaha.119.043067

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhu J, Bi Z, Yang T, Wang W, Li Z, Huang W, Wang L, Zhang S et al (2014) Regulation of PKM2 and Nrf2-ARE pathway during benzoquinone induced oxidative stress in yolk sac hematopoietic stem cells. PLoS ONE 9:e113733. https://doi.org/10.1371/journal.pone.0113733

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ren C, Tan P, Gao L, Zeng Y, Hu S, Chen C, Tang N, Chen Y et al (2023) Melatonin reduces radiation-induced ferroptosis in hippocampal neurons by activating the PKM2/NRF2/GPX4 signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry 126:110777. https://doi.org/10.1016/j.pnpbp.2023.110777

    Article  PubMed  Google Scholar 

  170. Santiago JA, Potashkin JA (2017) Evaluation of RNA blood biomarkers in individuals at risk of Parkinson’s disease. J Parkinsons Dis 7:653–660. https://doi.org/10.3233/jpd-171155

    Article  PubMed  Google Scholar 

  171. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, Yao H, Song N et al (2020) Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 11:941. https://doi.org/10.1038/s41467-020-14788-x

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ (2019) Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis 10:653. https://doi.org/10.1038/s41419-019-1877-6

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chen Q, Ruan D, Shi J, Du D, Bian C (2023) The multifaceted roles of natural products in mitochondrial dysfunction. Front Pharmacol 14:1093038. https://doi.org/10.3389/fphar.2023.1093038

    Article  PubMed  PubMed Central  Google Scholar 

  174. Pfanner N, Warscheid B, Wiedemann N (2019) Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20:267–284. https://doi.org/10.1038/s41580-018-0092-0

    Article  PubMed  PubMed Central  Google Scholar 

  175. Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M et al (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta 1823:2297–2310. https://doi.org/10.1016/j.bbamcr.2012.08.007

    Article  PubMed  Google Scholar 

  176. Zhu J, Wang KZ, Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9:1663–1676. https://doi.org/10.4161/auto.24135

    Article  PubMed  PubMed Central  Google Scholar 

  177. Al Ojaimi M, Salah A, El-Hattab AW (2022) Mitochondrial fission and fusion: molecular mechanisms, biological functions, and related disorders. Membranes 12(9):893. https://doi.org/10.3390/membranes12090893

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wu H, Yang P, Hu W, Wang Y, Lu Y, Zhang L, Fan Y, Xiao H et al (2016) Overexpression of PKM2 promotes mitochondrial fusion through attenuated p53 stability. Oncotarget 7:78069–78082. https://doi.org/10.18632/oncotarget.12942

    Article  PubMed  PubMed Central  Google Scholar 

  179. Liu T, Wang B, Li G, Dong X, Yu G, Qian Q, Duan L, Li H et al (2020) Disruption of microRNA-214 during general anaesthesia prevents brain injury and maintains mitochondrial fusion by promoting Mfn2 interaction with Pkm2. J Cell Mol Med 24:13589–13599. https://doi.org/10.1111/jcmm.15222

    Article  PubMed  PubMed Central  Google Scholar 

  180. Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M, Menabò R, Costa V et al (2015) The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:834–844. https://doi.org/10.1016/j.cmet.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yi Z, Wu Y, Zhang W, Wang T, Gong J, Cheng Y, Miao C (2020) Activator-mediated pyruvate kinase M2 activation contributes to endotoxin tolerance by promoting mitochondrial biogenesis. Front Immunol 11:595316. https://doi.org/10.3389/fimmu.2020.595316

    Article  PubMed  Google Scholar 

  182. Yang Q, Zou Y, Wei X, Ye P, Wu Y, Ai H, Zhang Z, Tan J et al (2023) PTP1B knockdown alleviates BMSCs senescence via activating AMPK-mediated mitophagy and promotes osteogenesis in senile osteoporosis. Biochim Biophys Acta Mol Basis Dis 1869:166795. https://doi.org/10.1016/j.bbadis.2023.166795

    Article  PubMed  Google Scholar 

  183. Shen Y, Peng X, Ji H, Gong W, Zhu H, Wang J (2023) Dapagliflozin protects heart function against type-4 cardiorenal syndrome through activation of PKM2/PP1/FUNDC1-dependent mitophagy. Int J Biol Macromol 250:126116. https://doi.org/10.1016/j.ijbiomac.2023.126116

    Article  PubMed  Google Scholar 

  184. Thal DR, Walter J, Saido TC, Fändrich M (2015) Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol 129:167–182. https://doi.org/10.1007/s00401-014-1375-y

    Article  PubMed  Google Scholar 

  185. Han J, Hyun J, Park J, Jung S, Oh Y, Kim Y, Ryu SH, Kim SH et al (2021) Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimer’s disease. Cell Rep 37:110102. https://doi.org/10.1016/j.celrep.2021.110102

    Article  PubMed  Google Scholar 

  186. Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y et al (2022) Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab 34:634-648.e6. https://doi.org/10.1016/j.cmet.2022.02.013

    Article  PubMed  Google Scholar 

  187. Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, Barros M, Li T et al (2020) The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 586:735–740. https://doi.org/10.1038/s41586-020-2681-2

    Article  PubMed  PubMed Central  Google Scholar 

  188. Liu T, Ouyang R (2021) Effect of continuous positive air pressure on cognitive impairment associated with obstructive sleep apnea. Zhong Nan Da Xue Xue Bao Yi Xue Ban 46:865–871. https://doi.org/10.11817/j.issn.1672-7347.2021.190600

    Article  PubMed  Google Scholar 

  189. Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ, Sawaya BE (2022) Metabolic reprogramming in HIV-associated neurocognitive disorders. Front Cell Neurosci 16:812887. https://doi.org/10.3389/fncel.2022.812887

    Article  PubMed  PubMed Central  Google Scholar 

  190. Flick MJ (2022) Targeting neutrophil PKM2 for stroke treatment. Blood 139:1131–1132. https://doi.org/10.1182/blood.2021014199

    Article  PubMed  Google Scholar 

  191. Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R et al (2011) Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 4:28. https://doi.org/10.1186/1756-6606-4-28

    Article  PubMed  PubMed Central  Google Scholar 

  192. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232. https://doi.org/10.1016/j.nbd.2005.11.002

    Article  PubMed  Google Scholar 

  193. Liu W, Zhuo P, Li L, Jin H, Lin B, Zhang Y, Liang S, Wu J et al (2017) Activation of brain glucose metabolism ameliorating cognitive impairment in APP/PS1 transgenic mice by electroacupuncture. Free Radic Biol Med 112:174–190. https://doi.org/10.1016/j.freeradbiomed.2017.07.024

    Article  PubMed  Google Scholar 

  194. Xu A, Tang Y, Zeng Q, Wang X, Tian H, Zhou Y, Li Z (2020) Electroacupuncture enhances cognition by promoting brain glucose metabolism and inhibiting inflammation in the APP/PS1 mouse model of Alzheimer’s disease: a pilot study. J Alzheimers Dis 77:387–400. https://doi.org/10.3233/jad-200242

    Article  PubMed  Google Scholar 

  195. Li J, Zhang B, Jia W, Yang M, Zhang Y, Zhang J, Li L, Jin T et al (2021) Activation of adenosine monophosphate-activated protein kinase drives the aerobic glycolysis in hippocampus for delaying cognitive decline following electroacupuncture treatment in APP/PS1 mice. Front Cell Neurosci 15:774569. https://doi.org/10.3389/fncel.2021.774569

    Article  PubMed  PubMed Central  Google Scholar 

  196. Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126:56–68. https://doi.org/10.1016/j.pharmthera.2010.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  197. Stemkowski PL, Smith PA (2012) Sensory neurons, ion channels, inflammation and the onset of neuropathic pain. Can J Neurol Sci 39:416–435. https://doi.org/10.1017/s0317167100013937

    Article  PubMed  Google Scholar 

  198. Rahman MH, Jha MK, Kim JH, Nam Y, Lee MG, Go Y, Harris RA, Park DH et al (2016) Pyruvate dehydrogenase kinase-mediated glycolytic metabolic shift in the dorsal root ganglion drives painful diabetic neuropathy. J Biol Chem 291:6011–6025. https://doi.org/10.1074/jbc.M115.699215

    Article  PubMed  PubMed Central  Google Scholar 

  199. Zhang ZJ, Jiang BC, Gao YJ (2017) Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 74:3275–3291. https://doi.org/10.1007/s00018-017-2513-1

    Article  PubMed  Google Scholar 

  200. Hossain MZ, Unno S, Ando H, Masuda Y, Kitagawa J (2017) Neuron-Glia crosstalk and neuropathic pain: involvement in the modulation of motor activity in the Orofacial Region. Int J Mol Sci 18(10):2051. https://doi.org/10.3390/ijms18102051

    Article  PubMed  PubMed Central  Google Scholar 

  201. Sebestova M, Lackner I, Inayat M, Ademaj A, Mikutta C (2021) Post stroke depression. Ther Umsch 78:299–304. https://doi.org/10.1024/0040-5930/a001274

    Article  PubMed  Google Scholar 

  202. Cui R (2015) Editorial: a systematic review of depression. Curr Neuropharmacol 13:480. https://doi.org/10.2174/1570159x1304150831123535

    Article  PubMed  Google Scholar 

  203. Guo J, Wang J, Sun W, Liu X (2022) The advances of post-stroke depression: 2021 update. J Neurol 269:1236–1249. https://doi.org/10.1007/s00415-021-10597-4

    Article  PubMed  Google Scholar 

  204. Li Z, Xu H, Xu Y, Lu G, Peng Q, Chen J, Bi R, Li J et al (2021) Morinda officinalis oligosaccharides alleviate depressive-like behaviors in post-stroke rats via suppressing NLRP3 inflammasome to inhibit hippocampal inflammation. CNS Neurosci Ther 27:1570–1586. https://doi.org/10.1111/cns.13732

    Article  PubMed  PubMed Central  Google Scholar 

  205. Yu J, Xu W, Luo Y, Ou W, Li S, Chen X, Xu J (2019) Dynamic monitoring of depressive behavior induced by nonylphenol and its effect on synaptic plasticity in rats. Sci Total Environ 689:1012–1022. https://doi.org/10.1016/j.scitotenv.2019.06.250

    Article  PubMed  Google Scholar 

  206. Yang SQ, Tang YY, Zeng D, Tian Q, Wei HJ, Wang CY, Zhang P, Chen YJ et al (2022) Sodium hydrosulfide reverses β(2)-microglobulin-induced depressive-like behaviors of male Sprague-Dawley rats: involving improvement of synaptic plasticity and enhancement of Warburg effect in hippocampus. Behav Brain Res 417:113562. https://doi.org/10.1016/j.bbr.2021.113562

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 82060218).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The first draft of the manuscript was written by Xiaoping Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ping Xu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lei, Y., Zhou, H. et al. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03901-y

Keywords

Navigation