Skip to main content

Advertisement

Log in

Loss of Direct Vascular Contact to Astrocytes in the Hippocampus as an Initial Event in Alzheimer’s Disease. Evidence from Patients, In Vivo and In Vitro Experimental Models

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and within the walls of cerebral vessels. The hippocampus—a complex brain structure with a pivotal role in learning and memory—is implicated in this disease. However, there is limited data on vascular changes during AD pathological degeneration in this susceptible structure, which has distinctive vascular traits. Our aim was to evaluate vascular alterations in the hippocampus of AD patients and PDAPP-J20 mice—a model of AD—and to determine the impact of Aβ40 and Aβ42 on endothelial cell activation. We found a loss of physical astrocyte-endothelium interaction in the hippocampus of individuals with AD as compared to non-AD donors, along with reduced vascular density. Astrocyte-endothelial interactions and levels of the tight junction protein occludin were altered early in PDAPP-J20 mice, preceding any signs of morphological changes or disruption of the blood–brain barrier in these mice. At later stages, PDAPP-J20 mice exhibited decreased vascular density in the hippocampus and leakage of fluorescent tracers, indicating dysfunction of the vasculature and the BBB. In vitro studies showed that soluble Aβ40 exposure in human brain microvascular endothelial cells (HBMEC) was sufficient to induce NFκB translocation to the nucleus, which may be linked with an observed reduction in occludin levels. The inhibition of the membrane receptor for advanced glycation end products (RAGE) prevented these changes in HBMEC. Additional results suggest that Aβ42 indirectly affects the endothelium by inducing astrocytic factors. Furthermore, our results from human and mouse brain samples provide evidence for the crucial involvement of the hippocampal vasculature in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data and material are available upon request to the corresponding author.

References

  1. Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M et al (2022) Amyloid cascade hypothesis for the treatment of Alzheimer’s disease: progress and challenges. Aging Dis 13:1745–1758

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  3. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ (2020) Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 16:30–42

    Article  PubMed  CAS  Google Scholar 

  5. Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys 301:41–52

    Article  PubMed  CAS  Google Scholar 

  6. Yamada M (2015) Cerebral amyloid angiopathy: emerging concepts. J Stroke 17:17–30

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC, and Initiative Alzheimer’s Disease Neuroimaging (2016) Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 7:11934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK (2019) Nuclear factor-kappa beta as a therapeutic target for Alzheimer’s disease. J Neurochem 150:113–137

    Article  PubMed  CAS  Google Scholar 

  9. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172

    Article  PubMed  Google Scholar 

  10. Koerich S, Parreira GM, de Almeida DL, Vieira RP, de Oliveira ACP (2023) Receptors for advanced glycation end products (RAGE): promising targets aiming at the treatment of neurodegenerative conditions. Curr Neuropharmacol 21:219–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Park R, Kook SY, Park JC, Mook-Jung I (2014) Abeta1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-kappaB signaling. Cell Death Dis 5:e1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tolstova AP, Adzhubei AA, Mitkevich VA, Petrushanko IY, Makarov AA (2022) ‘Docking and molecular dynamics-based identification of interaction between various beta-amyloid isoforms and RAGE receptor’. Int J Mol Sci 23

  13. Beauquis J, Homo-Delarche F, Giroix MH, Ehses J, Coulaud J, Roig P, Portha B, De Nicola AF et al (2010) Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats. Exp Neurol 222:125–134

    Article  PubMed  CAS  Google Scholar 

  14. Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K (2021) Alzheimer’s disease and type 2 diabetes mellitus: a systematic review of proteomic studies. J Neurochem 156:753–776

    Article  PubMed  CAS  Google Scholar 

  15. Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, Saravia F, Beauquis J (2021) Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease. Front Neurosci 15:653651

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ et al (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586

    Article  PubMed  CAS  Google Scholar 

  18. Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN et al (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127:3136–3151

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S (2021) Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia 69:436–472

    Article  PubMed  CAS  Google Scholar 

  20. Yue Q, Hoi MPM (2023) Emerging roles of astrocytes in blood-brain barrier disruption upon amyloid-beta insults in Alzheimer’s disease. Neural Regen Res 18:1890–1902

    PubMed  PubMed Central  Google Scholar 

  21. Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 18:406–414

    Article  PubMed  CAS  Google Scholar 

  22. Presa JL, Saravia F, Bagi Z, Filosa JA (2020) Vasculo-neuronal coupling and neurovascular coupling at the neurovascular unit: impact of hypertension. Front Physiol 11:584135

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  PubMed  CAS  Google Scholar 

  24. Demene C, Tiran E, Sieu LA, Bergel A, Gennisson JL, Pernot M, Deffieux T, Cohen I et al (2016) 4D microvascular imaging based on ultrafast Doppler tomography. Neuroimage 127:472–483

    Article  PubMed  Google Scholar 

  25. Johnson AC (2023) Hippocampal vascular supply and its role in vascular cognitive impairment. Stroke 54:673–685

    Article  PubMed  CAS  Google Scholar 

  26. Soto-Rojas LO, Pacheco-Herrero M, Martinez-Gomez PA, Campa-Cordoba BB, Apatiga-Perez R, Villegas-Rojas MM, Harrington CR, de la Cruz F et al (2021) ‘The neurovascular unit dysfunction in Alzheimer’s disease’. Int J Mol Sci 22

  27. Wan W, Cao L, Liu L, Zhang C, Kalionis B, Tai X, Li Y, Xia S (2015) Abeta(1–42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins. J Neurochem 134:382–393

    Article  PubMed  CAS  Google Scholar 

  28. Yao D, Zhang R, Xie M, Ding F, Wang M, Wang W (2023) Updated understanding of the glial-vascular unit in central nervous system disorders. Neurosci Bull 39:503–518

    Article  PubMed  Google Scholar 

  29. Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS (2023) Vascular contributions to Alzheimer’s disease. Transl Res 254:41–53

    Article  PubMed  CAS  Google Scholar 

  30. Dorr A, Sahota B, Chinta LV, Brown ME, Lai AY, Ma K, Hawkes CA, McLaurin J et al (2012) Amyloid-beta-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. Brain 135:3039–3050

    Article  PubMed  Google Scholar 

  31. Kimbrough IF, Robel S, Roberson ED, Sontheimer H (2015) Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease. Brain 138:3716–3733

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA, Kalback WM, Luehrs DC et al (2001) The evolution of A beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease. Mol Med 7:609–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kuo YM, Crawford F, Mullan M, Kokjohn TA, Emmerling MR, Weller RO, Roher AE (2000) Elevated A beta and apolipoprotein E in A betaPP transgenic mice and its relationship to amyloid accumulation in Alzheimer’s disease. Mol Med 6:430–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen M (2021) Vascular hypothesis of alzheimer disease: topical review of mouse models. Arterioscler Thromb Vasc Biol 41:1265–1283

    Article  PubMed  CAS  Google Scholar 

  35. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S, Carlson E, Sagi SA et al (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci USA 103:7130–7135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC et al (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D et al (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Beauquis J, Vinuesa A, Pomilio C, Pavia P, Galvan V, Saravia F (2014) Neuronal and glial alterations, increased anxiety, and cognitive impairment before hippocampal amyloid deposition in PDAPP mice, model of Alzheimer’s disease. Hippocampus 24:257–269

    Article  PubMed  CAS  Google Scholar 

  39. Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih YY et al (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33:1412–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Simon AM, Schiapparelli L, Salazar-Colocho P, Cuadrado-Tejedor M, Escribano L, de Maturana RL, Del Rio J, Perez-Mediavilla A et al (2009) Overexpression of wild-type human APP in mice causes cognitive deficits and pathological features unrelated to Abeta levels. Neurobiol. Dis. 33:369–78

    Article  PubMed  CAS  Google Scholar 

  41. Stins MF, Gilles F, Kim KS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76:81–90

    Article  PubMed  CAS  Google Scholar 

  42. Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miraglia MC, Rodriguez AM, Barrionuevo P, Rodriguez J, Kim KS, Dennis VA, Delpino MV, Giambartolomei GH (2018) Brucella abortus Traverses brain microvascular endothelial cells using infected monocytes as a Trojan horse. Front Cell Infect Microbiol 8:200

    Article  PubMed  PubMed Central  Google Scholar 

  44. Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    Article  PubMed  CAS  Google Scholar 

  45. Ajit D, Udan ML, Paranjape G, Nichols MR (2009) Amyloid-beta(1–42) fibrillar precursors are optimal for inducing tumor necrosis factor-alpha production in the THP-1 human monocytic cell line. Biochemistry 48:9011–9021

    Article  PubMed  CAS  Google Scholar 

  46. Paranjape GS, Gouwens LK, Osborn DC, Nichols MR (2012) Isolated amyloid-beta(1–42) protofibrils, but not isolated fibrils, are robust stimulators of microglia. ACS Chem Neurosci 3:302–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gregosa A, Vinuesa A, Todero MF, Pomilio C, Rossi SP, Bentivegna M, Presa J, Wenker S et al (2019) Periodic dietary restriction ameliorates amyloid pathology and cognitive impairment in PDAPP-J20 mice: potential implication of glial autophagy. Neurobiol Dis 132:104542

    Article  PubMed  CAS  Google Scholar 

  49. Lagenaur C, Lemmon V (1987) An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A 84:7753–7757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pomilio C, Pavia P, Gorojod RM, Vinuesa A, Alaimo A, Galvan V, Kotler ML, Beauquis J et al (2016) Glial alterations from early to late stages in a model of Alzheimer’s disease: evidence of autophagy involvement in Abeta internalization. Hippocampus 26:194–210

    Article  PubMed  CAS  Google Scholar 

  51. Apatiga-Perez R, Soto-Rojas LO, Campa-Cordoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I, Ontiveros-Torres MA, Bravo-Munoz M et al (2022) Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer’s disease. Metab Brain Dis 37:39–50

    Article  PubMed  CAS  Google Scholar 

  52. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM (2011) Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol 122:293–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jones RS, Minogue AM, Connor TJ, Lynch MA (2013) Amyloid-beta-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J Neuroimmune Pharmacol 8:301–311

    Article  PubMed  Google Scholar 

  55. Villarreal A, Seoane R, Gonzalez Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ (2014) S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 131:190–205

    Article  PubMed  CAS  Google Scholar 

  56. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122:1377–1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yeung JHY, Calvo-Flores Guzman B, Palpagama TH, Ethiraj J, Zhai Y, Tate WP, Peppercorn K, Waldvogel HJ et al (2020) Amyloid-beta(1–42) induced glutamatergic receptor and transporter expression changes in the mouse hippocampus. J Neurochem 155:62–80

    Article  PubMed  CAS  Google Scholar 

  58. Graham WV, Bonito-Oliva A, Sakmar TP (2017) Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 68:413–430

    Article  PubMed  CAS  Google Scholar 

  59. Beshir SA, Aadithsoorya AM, Parveen A, Goh SSL, Hussain N, Menon VB (2022) Aducanumab therapy to treat Alzheimer’s disease: a narrative review. Int J Alzheimers Dis 2022:9343514

    PubMed  PubMed Central  Google Scholar 

  60. Dhillon S (2021) Aducanumab: First Approval. Drugs 81:1437–1443

    Article  PubMed  CAS  Google Scholar 

  61. Avgerinos KI, Ferrucci L, Kapogiannis D (2021) Effects of monoclonal antibodies against amyloid-beta on clinical and biomarker outcomes and adverse event risks: a systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res Rev 68:101339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Fillit H, Green A (2021) Aducanumab and the FDA - where are we now? Nat Rev Neurol 17:129–130

    Article  PubMed  Google Scholar 

  63. Foley KE, Wilcock DM (2022) Vascular considerations for amyloid immunotherapy. Curr Neurol Neurosci Rep 22:709–719

    Article  PubMed  PubMed Central  Google Scholar 

  64. Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C et al (2008) Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131:3299–3310

    Article  PubMed  CAS  Google Scholar 

  65. Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175:2099–2110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mo JJ, Li JY, Yang Z, Liu Z, Feng JS (2017) Efficacy and safety of anti-amyloid-beta immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 4:931–942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang YJ (2014) Alzheimer disease: lessons from immunotherapy for Alzheimer disease. Nat Rev Neurol 10:188–189

    Article  PubMed  CAS  Google Scholar 

  68. Kirabali T, Rust R, Rigotti S, Siccoli A, Nitsch RM, Kulic L (2020) Distinct changes in all major components of the neurovascular unit across different neuropathological stages of Alzheimer’s disease. Brain Pathol 30:1056–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Wang J, Fan DY, Li HY, He CY, Shen YY, Zeng GH, Chen DW, Yi X et al (2022) Dynamic changes of CSF sPDGFRbeta during ageing and AD progression and associations with CSF ATN biomarkers. Mol Neurodegener 17:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS et al (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. ‘2023 Alzheimer’s disease facts and figures’ (2023) Alzheimers Dement 19:1598–695

  73. Duncombe J, Lennen RJ, Jansen MA, Marshall I, Wardlaw JM, Horsburgh K (2017) Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis. Neuropathol Appl Neurobiol 43:477–491

    Article  PubMed  CAS  Google Scholar 

  74. Hussong SA, Banh AQ, Van Skike CE, Dorigatti AO, Hernandez SF, Hart MJ, Ferran B, Makhlouf H et al (2023) Soluble pathogenic tau enters brain vascular endothelial cells and drives cellular senescence and brain microvascular dysfunction in a mouse model of tauopathy. Nat Commun 14:2367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE, Pautler RG, Taffet GE et al (2014) Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener 9:28

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu Y, Hu PP, Zhai S, Feng WX, Zhang R, Li Q, Marshall C, Xiao M et al (2022) Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer’s disease. Neural Regen Res 17:2079–2088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Robertson RT, Levine ST, Haynes SM, Gutierrez P, Baratta JL, Tan Z, Longmuir KJ (2015) Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol 143:225–234

    Article  PubMed  CAS  Google Scholar 

  78. Zeng F, Liu Y, Huang W, Qing H, Kadowaki T, Kashiwazaki H, Ni J, Wu Z (2021) Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid beta accumulation after Porphyromonas gingivalis infection. J Neurochem 158:724–736

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their special gratitude to Dr Kwang Sik Kim, John Hopkins University for generously donating the HBMEC cells to our research group. We deeply mourn his recent passing and appreciate his invaluable contribution. We would also like to thank Dr. María Cruz Miraglia and Dr. Guillermo Giambartolomei from the Institute of Immunology, Genetics, and Metabolism at CONICET for their support and collaboration.

Funding

This work was supported by Williams, René Barón and Florencio Fiorini Foundations, ANPCyT PICT Grants: 2016–1046 FS, 2016–1572 JB, 2019–03419 FS, PICT 2019–03928 ÁV, 2019–03692 JB, 2021–0509 CP and UBACyT 2018 Grant. The funding sources had no involvement in the study design nor the collection, analysis and interpretation of data. JP, CO, MB, and AG are recipients of CONICET PhD Fellowships, Argentina.

Author information

Authors and Affiliations

Authors

Contributions

CP, JB, and FS conceived the studies and secured funding; CP, JP, JB, and FS designed and performed or supervised the performance of the experiments; CP, JP, CO, AV, MB, and AG analyzed the data; MR and GS provided the post mortem human samples; CP, JP, CO, VL, JB, and FS wrote and/or edited the manuscript. CP, VL, JB, and FS are CONICET Researchers.

Corresponding author

Correspondence to F. Saravia.

Ethics declarations

Ethics Approval and Consent to Participate

Human brain post-mortem samples were obtained from the Biobank of the Instituto de Investigaciones Neurológicas Dr. Raúl Carrea, FLENI (http://www.fleni.org.ar/investigacion-educacion/investigacion-2/biobancos/) Buenos Aires, Argentina. FLENI’s Biobank participates in the global Alzheimer’s Disease Neuroimage Initiative (ADNI) and works in a collaborative and network-like manner with other brain banks in the world, only with scientific and altruistic purposes. The Biobank supplied brain specimens, anonymized antemortem information, and postmortem diagnosis. Informed consent of pre-donors authorizing the use of brain samples for research purposes was obtained by qualified personnel from the Instituto de Investigaciones Neurológicas Dr. Raúl Carrea and approved by the Institutional Ethics Committee (https://www.fleni.org.ar/investigacion-educacion/ceib/). No separate institutional approval was required.

Consent for Publication

The authors confirm consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomilio, C., Presa, J., Oses, C. et al. Loss of Direct Vascular Contact to Astrocytes in the Hippocampus as an Initial Event in Alzheimer’s Disease. Evidence from Patients, In Vivo and In Vitro Experimental Models. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-023-03897-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03897-5

Keywords

Navigation