Skip to main content

Advertisement

Log in

Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

C9orf72 genetic mutation is the most common genetic cause of ALS/FTD accompanied by abnormal protein insufficiency. Induced pluripotent stem cell (iPSC)-derived two-dimensional (2D) and three-dimensional (3D) cultures are providing new approaches. Therefore, this study established neuronal cell types and generated spinal cord organoids (SCOs) derived from C9orf72 knockdown human iPSCs to model ALS disease and screen the unrevealed phenotype. Wild-type (WT) iPSC lines from three healthy donor fibroblasts were established, and pluripotency and differentiation ability were identified by RT-PCR, immunofluorescence and flow cytometry. After infection by the lentivirus with C9orf72-targeting shRNA, stable C9-knockdown iPSC colonies were selected and differentiated into astrocytes, motor neurons and SCOs. Finally, we analyzed the extracted RNA-seq data of human C9 mutant/knockout iPSC-derived motor neurons and astrocytes from the GEO database and the inflammatory regulation-related genes in function and pathways. The expression of inflammatory factors was measured by qRT-PCR. The results showed that both WT-iPSCs and edited C9-iPSCs maintained a similar ability to differentiate into the three germ layers, astrocytes and motor neurons, forming SCOs in a 3D culture system. The constructed C9-SCOs have features of spinal cord development and multiple neuronal cell types, including sensory neurons, motor neurons, and other neurons. Based on the bioinformatics analysis, proinflammatory factors were confirmed to be upregulated in C9-iPSC-derived 2D cells and 3D cultured SCOs. The above differentiated models exhibited low C9orf72 expression and the pathological characteristics of ALS, especially neuroinflammation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ALS :

Amyotrophic lateral sclerosis

C9orf72 :

Chromosome 9 open reading frame 72

WT :

Wild type;

HiPSCs :

Human induced pluripotent stem cells

SOX2 :

SRY-box transcription factor 2

OCT4 :

Octamer-binding transcription factor 4

SSEA4 :

Stage-specific embryonic antigen 4

NSCs :

Neural stem cells

GFAP :

Glial fibrillary acidic protein

CHAT :

Choline acetyltransferase

FOXA2 :

Forkhead box A2

IL :

Interleukin

TNFα :

Tumour necrosis factor alpha-like

TGFβ :

Transforming growth factor beta

VEGF :

Vascular endothelial growth factor

IFNγ :

Interferon γ

Cos :

Cerebral organoids

SCOs :

Spinal cord organoids

3D :

Three-dimensional

GDNF :

Glial-derived neurotrophic factor

BDNF :

Brain-derived neurotrophic factor

References

  1. Genge A, Chio A (2023) The future of ALS diagnosis and staging: where do we go from here? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 24(3–4):165–174. https://doi.org/10.1080/21678421.2022.2150555

    Article  PubMed  Google Scholar 

  2. Punjani, R, Larson, TC, Wagner, L, Davis, B, Horton, DK, Kaye, W (2022) Survival and epidemiology of amyotrophic lateral sclerosis (ALS) cases in the chicago and detroit metropolitan cohort: incident cases 2009–2011 and survival through 2018. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 1–9. https://doi.org/10.1080/21678421.2022.2121167.

  3. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A hexanucleotide repeat expansion in c9orf72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dejesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J et al (2011) Expanded ggggcc hexanucleotide repeat in noncoding region of c9orf72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaivola K, Pirinen M, Laaksovirta H, Jansson L, Rautila O, Launes J, Hokkanen L, Lahti J, Eriksson JG, Strandberg TE et al (2023) C9orf72 hexanucleotide repeat allele tagging snps: associations with ALS risk and longevity. Front Genet 14:1087098. https://doi.org/10.3389/fgene.2023.1087098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mackenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K, Weng SM, Haass C, Kretzschmar HA, Edbauer D et al (2013) Dipeptide repeat protein pathology in c9orf72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126(6):859–879. https://doi.org/10.1007/s00401-013-1181-y

    Article  CAS  PubMed  Google Scholar 

  7. Therrien M, Rouleau GA, Dion PA, Parker JA (2013) Deletion of c9orf72 results in motor neuron degeneration and stress sensitivity in c. Elegans Plos One 8(12):e83450. https://doi.org/10.1371/journal.pone.0083450

    Article  CAS  PubMed  Google Scholar 

  8. Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507(7491):195–200. https://doi.org/10.1038/nature13124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S et al (2015) The c9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525(7567):56–61. https://doi.org/10.1038/nature14973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A, Kabashi E (2013) Loss of function of c9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 74(2):180–187. https://doi.org/10.1002/ana.23946

    Article  CAS  PubMed  Google Scholar 

  11. Jiang J, Zhu Q, Gendron TF, Saberi S, Mcalonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D et al (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in c9orf72 is alleviated by antisense oligonucleotides targeting ggggcc-containing rnas. Neuron 90(3):535–550. https://doi.org/10.1016/j.neuron.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. https://doi.org/10.1038/nature12517

    Article  CAS  PubMed  Google Scholar 

  13. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340. https://doi.org/10.1038/nprot.2014.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muzio L, Consalez GG (2013) Modeling human brain development with cerebral organoids. Stem Cell Res Ther 4(6):154. https://doi.org/10.1186/scrt384

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Jiang J, Xu Z, Yan H, Tang B, Liu C, Chen C, Meng Q (2023) Microglia-containing human brain organoids for the study of brain development and pathology. Mol Psychiatry 28(1):96–107. https://doi.org/10.1038/s41380-022-01892-1

    Article  PubMed  Google Scholar 

  16. Adlakha YK (2023) Human 3d brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discovery 9(1):221. https://doi.org/10.1038/s41420-023-01523-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, Wang A, Wu W, Haddad GG, Chaim IA et al (2019) Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25(4):558–569. https://doi.org/10.1016/j.stem.2019.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tamaki Y, Ross JP, Alipour P, Castonguay CÉ, Li B, Catoire H, Rochefort D, Urushitani M, Takahashi R, Sonnen JA et al (2023) Spinal cord extracts of amyotrophic lateral sclerosis spread tdp-43 pathology in cerebral organoids. PLoS Genet 19(2):e1010606. https://doi.org/10.1371/journal.pgen.1010606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szebényi K, Wenger L, Sun Y, Dunn A, Limegrover CA, Gibbons GM, Conci E, Paulsen O, Mierau SB, Balmus G et al (2021) Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci 24(11):1542–1554. https://doi.org/10.1038/s41593-021-00923-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pereira JD, Dubreuil DM, Devlin AC, Held A, Sapir Y, Berezovski E, Hawrot J, Dorfman K, Chander V, Wainger BJ (2021) Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat Commun 12(1):4744. https://doi.org/10.1038/s41467-021-24776-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Rourke JG, Bogdanik L, Yanez A, Lall D, Wolf AJ, Muhammad AK, Ho R, Carmona S, Vit JP, Zarrow J et al (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science 351(6279):1324–1329. https://doi.org/10.1126/science.aaf1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atanasio A, Decman V, White D, Ramos M, Ikiz B, Lee HC, Siao CJ, Brydges S, Larosa E, Bai Y et al (2016) C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci Rep 6:23204. https://doi.org/10.1038/srep23204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li CY, Yang TM, Ou RW, Wei QQ, Shang HF (2021) Genome-wide genetic links between amyotrophic lateral sclerosis and autoimmune diseases. BMC Med 19(1):27. https://doi.org/10.1186/s12916-021-01903-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burberry A, Suzuki N, Wang JY, Moccia R, Mordes DA, Stewart MH, Suzuki-Uematsu S, Ghosh S, Singh A, Merkle FT et al (2016) Loss-of-function mutations in the c9orf72 mouse ortholog cause fatal autoimmune disease. Sci Transl Med 8(347):347r–393r. https://doi.org/10.1126/scitranslmed.aaf6038

    Article  CAS  Google Scholar 

  25. Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GN, Mochly-Rosen D (2019) Fragmented mitochondria released from microglia trigger a1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22(10):1635–1648. https://doi.org/10.1038/s41593-019-0486-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varcianna A, Myszczynska MA, Castelli LM, O’Neill B, Kim Y, Talbot J, Nyberg S, Nyamali I, Heath PR, Stopford MJ et al (2019) Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in c9orf72 ALS. EBioMedicine 40:626–635. https://doi.org/10.1016/j.ebiom.2018.11.067

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST, Hendricks E, Linares GR, Wang Y, Son EY et al (2018) Haploinsufficiency leads to neurodegeneration in c9orf72 ALS/FTD human induced motor neurons. Nat Med 24(3):313–325. https://doi.org/10.1038/nm.4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Birger A, Ben-Dor I, Ottolenghi M, Turetsky T, Gil Y, Sweetat S, Perez L, Belzer V, Casden N, Steiner D et al (2019) Human iPSC-derived astrocytes from ALS patients with mutated c9orf72 show increased oxidative stress and neurotoxicity. EBioMedicine 50:274–289. https://doi.org/10.1016/j.ebiom.2019.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ziff OJ, Clarke BE, Taha DM, Crerar H, Luscombe NM, Patani R (2022) Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states. Genome Res 32(1):71–84. https://doi.org/10.1101/gr.275939.121

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sommer D, Rajkumar S, Seidel M, Aly A, Ludolph A, Ho R, Boeckers TM, Catanese A (2022) Aging-dependent altered transcriptional programs underlie activity impairments in human c9orf72-mutant motor neurons. Front Mol Neurosci 15:894230. https://doi.org/10.3389/fnmol.2022.894230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Catanese A, Rajkumar S, Sommer D, Freisem D, Wirth A, Aly A, Massa-Lopez D, Olivieri A, Torelli F, Ioannidis V et al (2021) Synaptic disruption and creb-regulated transcription are restored by k(+) channel blockers in ALS. Embo Mol Med 13(7):e13131. https://doi.org/10.15252/emmm.202013131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dafinca R, Barbagallo P, Farrimond L, Candalija A, Scaber J, Ababneh NA, Sathyaprakash C, Vowles J, Cowley SA, Talbot K (2020) Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-Derived motor neurons from Patients with ALS/FTD. Stem Cell Reports 14(5):892–908. https://doi.org/10.1016/j.stemcr.2020.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abo-Rady M, Kalmbach N, Pal A, Schludi C, Janosch A, Richter T, Freitag P, Bickle M, Kahlert AK, Petri S et al (2020) Knocking out c9orf72 exacerbates axonal trafficking defects associated with hexanucleotide repeat expansion and reduces levels of heat shock proteins. Stem Cell Reports 14(3):390–405. https://doi.org/10.1016/j.stemcr.2020.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Balendra R, Isaacs AM (2018) C9orf72-mediated als and ftd: multiple pathways to disease. Nat Rev Neurol 14(9):544–558. https://doi.org/10.1038/s41582-018-0047-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koppers M, Blokhuis AM, Westeneng HJ, Terpstra ML, Zundel CA, Vieira DSR, Schellevis RD, Waite AJ, Blake DJ, Veldink JH et al (2015) C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 78(3):426–438. https://doi.org/10.1002/ana.24453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong W, Ma Y, Guan F, Zhang X, Chen W, Zhang L, Zhang L (2021) Ablation of c9orf72 together with excitotoxicity induces ALS in rats. FEBS J 288(5):1712–1723. https://doi.org/10.1111/febs.15501

    Article  CAS  PubMed  Google Scholar 

  38. Boutin ME, Hampton C, Quinn R, Ferrer M, Song MJ (2019) 3d engineering of ocular tissues for disease modeling and drug testing. Adv Exp Med Biol 1186:171–193. https://doi.org/10.1007/978-3-030-2847-8-7

    Article  CAS  PubMed  Google Scholar 

  39. Yuva-Aydemir Y, Almeida S, Gao FB (2018) Insights into c9orf72-related ALS/FTD from drosophila and iPSC models. Trends Neurosci 41(7):457–469. https://doi.org/10.1016/j.tins.2018.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szebenyi K, Wenger L, Sun Y, Dunn A, Limegrover CA, Gibbons GM, Conci E, Paulsen O, Mierau SB, Balmus G et al (2021) Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci 24(11):1542–1554. https://doi.org/10.1038/s41593-021-00923-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seto Y, Eiraku M (2019) Toward the formation of neural circuits in human brain organoids. Curr Opin Cell Biol 61:86–91. https://doi.org/10.1016/j.ceb.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  42. Qian, X, Song, H, Ming, GL (2019) Brain organoids: advances, applications and challenges. Development 146(8). https://doi.org/10.1242/dev.166074

  43. Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y (2022) Human organoids in basic research and clinical applications. Signal Transduct Target Ther 7(1):168. https://doi.org/10.1038/s41392-022-01024-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L (2022) Human mini brains and spinal cords in a dish: modeling strategies, current challenges, and prospective advances. J Tissue Eng 13:1768603695. https://doi.org/10.1177/20417314221113391

    Article  Google Scholar 

  45. Pinilla G, Kumar A, Floaters MK, Pardo CA, Rothstein J, Ilieva H (2021) Increased synthesis of pro-inflammatory cytokines in c9orf72 patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 22(7–8):517–527. https://doi.org/10.1080/21678421.2021.1912100

    Article  CAS  PubMed  Google Scholar 

  46. Leng K, Rose I, Kim H, Xia W, Romero-Fernandez W, Rooney B, Koontz M, Li E, Ao Y, Wang S et al (2022) CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat Neurosci 25(11):1528–1542. https://doi.org/10.1038/s41593-022-01180-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim H, Leng K, Park J, Sorets AG, Kim S, Shostak A, Embalabala RJ, Mlouk K, Katdare KA, Rose I et al (2022) Reactive astrocytes transduce inflammation in a blood-brain barrier model through a tnf-stat3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat Commun 13(1):6581. https://doi.org/10.1038/s41467-022-34412-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bottero V, Alrafati F, Santiago JA, Potashkin JA (2021) Transcriptomic and network meta-analysis of frontotemporal dementias. Front Mol Neurosci 14:747798. https://doi.org/10.3389/fnmol.2021.747798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dickson DW, Baker MC, Jackson JL, Dejesus-Hernandez M, Finch NA, Tian S, Heckman MG, Pottier C, Gendron TF, Murray ME et al (2019) Extensive transcriptomic study emphasizes importance of vesicular transport in c9orf72 expansion carriers. Acta Neuropathol Commun 7(1):150. https://doi.org/10.1186/s40478-019-0797-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Namboori SC, Thomas P, Ames R, Hawkins S, Garrett LO, Willis C, Rosa A, Stanton LW, Bhinge A (2021) Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons. Stem Cell Reports 16(12):3020–3035. https://doi.org/10.1016/j.stemcr.2021.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shao Q, Liang C, Chang Q, Zhang W, Yang M, Chen JF (2019) C9orf72 deficiency promotes motor deficits of a C9 ALS/FTD mouse model in a dose-dependent manner. Acta Neuropathol Commun 7(1):32. https://doi.org/10.1186/s40478-019-0685-7

    Article  PubMed  PubMed Central  Google Scholar 

  52. Masrori P, Beckers J, Gossye H, Van Damme P (2022) The role of inflammation in neurodegeneration: novel insights into the role of the immune system in c9orf72 hre-mediated ALS/FTD. Mol Neurodegener 17(1):22. https://doi.org/10.1186/s13024-022-00525-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guttenplan KA, Weigel MK, Adler DI, Couthouis J, Liddelow SA, Gitler AD, Barres BA (2020) Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun 11(1):3753. https://doi.org/10.1038/s41467-020-17514-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Renner, H, Grabos, M, Becker, KJ, Kagermeier, TE, Wu, J, Otto, M, Peischard, S, Zeuschner, D, Tsytsyura, Y, Disse, P et al. (2020) A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. Elife 9. https://doi.org/10.7554/eLife.52904

  55. Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, Zhang H, Li L, Sun L, Pan N et al (2018) A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555(7697):524–528. https://doi.org/10.1038/nature25980

    Article  CAS  PubMed  Google Scholar 

  56. Revah O, Gore F, Kelley KW, Andersen J, Sakai N, Chen X, Li MY, Birey F, Yang X, Saw NL et al (2022) Maturation and circuit integration of transplanted human cortical organoids. Nature 610(7931):319–326. https://doi.org/10.1038/s41586-022-05277-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Hebei Medical University, and funded by Natural Science Foundation of China (81801278), China Scholarship Council (201608130015), Natural Science Foundation of Hebei Province (H2019206637), Key Natural Science Foundation of Hebei Province (H2020206557), Overseas researcher Program in Hebei Provincial Department of human resources and social security (C20190509), Natural Science Foundation of Hebei Province (H2015206409), Natural Science Foundation of Hebei Province (H2023206266).

Funding

Funded by Natural Science Foundation of China (81801278), China Scholarship Council (201608130015), Natural Science Foundation of Hebei Province (H2019206637), Key Natural Science Foundation of Hebei Province (H2020206557), Overseas researcher Program in Hebei Provincial Department of human resources and social security (C20190509), Natural Science Foundation of Hebei Province (H2015206409), Natural Science Foundation of Hebei Province (H2023206266).

Author information

Authors and Affiliations

Authors

Contributions

JM and HXC conceived and designed the study. RYG conducted the research and investigation process, including performed the experiments and YMC performed the GEO data collection and analysis. JYZ collected the references and extracted and cross-checked the data. RYG and JM wrote the first draft of the manuscript. JM, HXC and RYG revised and discussed the final edition. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Ma or Huixian Cui.

Ethics declarations

Ethics approval and consent to participate

The human biopsy collection was approved by the Committee of Ethics on Experimentation of Hebei Medical University (assurance no. 20190505).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

a Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China.

b Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province 050017, China.

c Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Chen, Y., Zhang, J. et al. Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03836-4

Keywords

Navigation