Skip to main content
Log in

Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depression is a common psychological disease with high morbidity and mortality. Recently, the involvement of synaptic plasticity in the pathogenesis of depression has shed light on the direction of developing novel antidepressants. Levomilnacipran is a newly approved medication for the treatment of adult major depressive disorder. However, the detailed mechanisms underlying its antidepressant-like effects have yet to be illuminated. In this study, we aimed to investigate the role of levomilnacipran in regulating synaptic plasticity and explore the possible molecular mechanisms of its antidepressant effects using a rat model of depression induced by lipopolysaccharide (LPS). The results demonstrated that levomilnacipran (30 mg/kg, i.p.) significantly ameliorated depression-like behaviors in rats, alleviated the dysregulation of synaptic plasticity, and suppressed neuroinflammation within hippocampus induced by LPS-treatment. Levomilnacipran increased the expression of postsynaptic dense 95 (PSD-95) and synaptophysin (Syn) and reversed the imbalance between pro- and anti-inflammatory cytokines within hippocampus of depressed rats. Additionally, levomilnacipran elevated expression level of brain-derived neurotrophic factor (BDNF), accompanied by increased tyrosine kinase B (TrkB), phosphorylated phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-Akt), and phosphorylated mammalian target of rapamycin (p-mTOR). Taken together, these results suggest that levomilnacipran may exert antidepressant effects via upregulating BDNF/TrkB mediated PI3K/Akt/mTOR signaling pathway to improve synaptic plasticity. These findings reveal potential mechanisms for the antidepressant effects of levomilnacipran and offer new insights into the treatments for depression.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

LTP:

Long-term potentiation

LTD:

Long-term depression

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

NMDAR:

N-methyl-D-aspartate receptor

SNRI:

Serotonin and norepinephrine reuptake inhibitor

LPS:

Lipopolysaccharide

SPT:

Sucrose preference test

FST:

Forced swim test

OFT:

Open field test

TEM:

Transmission electron microscopy

ANOVA:

Analysis of variance

PSD-95:

Postsynaptic density protein 95

Syn:

Synaptophysin

BDNF:

Brain-derived neurotrophic factor

TrkB:

Tyrosine kinase B

PI3K:

Phosphatidylinositol 3-kinase

Akt:

Protein kinase B

mTOR:

Mammalian target of rapamycin

CREB:

CAMP-responsive element binding protein

GAPDH:

Glyceraldehyde-phosphate dehydrogenase

IL:

Interleukin

References

  1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  2. Collaborators GBDMD (2022) Global, regional, and national burden of 12 mental disorders in 204 countries and territories 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9:137–150

    Article  Google Scholar 

  3. Castren E (2013) Neuronal network plasticity and recovery from depression. JAMA Psychiat 70:983–989

    Article  Google Scholar 

  4. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134:1591–1609

    Article  PubMed  PubMed Central  Google Scholar 

  5. Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241–246

    Article  CAS  PubMed  Google Scholar 

  6. Frost DO, Tamminga CA, Medoff DR, Caviness V, Innocenti G, Carpenter WT (2004) Neuroplasticity and schizophrenia. Biol Psychiatry 56:540–543

    Article  PubMed  Google Scholar 

  7. Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, Jurjus GJ, Dieter L, Duman RS (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 16:69–82

    Article  CAS  PubMed  Google Scholar 

  8. Beneyto M, Meador-Woodruff JH (2008) Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology 33:2175–2186

    Article  CAS  PubMed  Google Scholar 

  9. Eisch AJ, Petrik D (2012) Depression and hippocampal neurogenesis: a road to remission? Science 338:72–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16:252–264

    Article  CAS  PubMed  Google Scholar 

  12. Jaworska N, Yang XR, Knott V, MacQueen G (2015) A review of fMRI studies during visual emotive processing in major depressive disorder. World J Biol Psychiatry 16:448–471

    Article  PubMed  Google Scholar 

  13. Nissen C, Holz J, Blechert J, Feige B, Riemann D, Voderholzer U, Normann C (2010) Learning as a model for neural plasticity in major depression. Biol Psychiatry 68:544–552

    Article  PubMed  Google Scholar 

  14. Mago R, Mahajan R, Thase ME (2014) Levomilnacipran: a newly approved drug for treatment of major depressive disorder. Expert Rev Clin Pharmacol 7:137–145

    Article  CAS  PubMed  Google Scholar 

  15. Thase ME, Gommoll C, Chen C, Kramer K, Sambunaris A (2016) Effects of levomilnacipran extended-release on motivation/energy and functioning in adults with major depressive disorder. Int Clin Psychopharmacol 31:332–340

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wagner G, Schultes MT, Titscher V, Teufer B, Klerings I, Gartlehner G (2018) Efficacy and safety of levomilnacipran, vilazodone and vortioxetine compared with other second-generation antidepressants for major depressive disorder in adults: a systematic review and network meta-analysis. J Affect Disord 228:1–12

    Article  CAS  PubMed  Google Scholar 

  17. Montgomery SA, Mansuy L, Ruth A, Bose A, Li H, Li D (2013) Efficacy and safety of levomilnacipran sustained release in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled, proof-of-concept study. J Clin Psychiatry 74:363–369

    Article  CAS  PubMed  Google Scholar 

  18. Krause-Sorio B, Kilpatrick L, Siddarth P, Ercoli L, Laird KT, Aguilar-Faustino Y, Milillo MM, Narr KL, Lavretsky H (2020) Cortical thickness increases with levomilnacipran treatment in a pilot randomised double-blind placebo-controlled trial in late-life depression. Psychogeriatrics 20:140–148

    Article  PubMed  Google Scholar 

  19. Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H (2020) Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation 17:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Auclair AL, Martel JC, Assie MB, Bardin L, Heusler P, Cussac D, Marien M, Newman-Tancredi A, O’Connor JA, Depoortere R (2013) Levomilnacipran (F2695), a norepinephrine-preferring SNRI: profile in vitro and in models of depression and anxiety. Neuropharmacology 70:338–347

    Article  CAS  PubMed  Google Scholar 

  21. Naegeli KJ, O’Connor JA, Banerjee P, Morilak DA (2013) Effects of milnacipran on cognitive flexibility following chronic stress in rats. Eur J Pharmacol 703:62–66

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto M, Tachibana K, Togashi H, Tahara K, Kojima T, Yamaguchi T, Yoshioka M (2005) Chronic treatment with milnacipran reverses the impairment of synaptic plasticity induced by conditioned fear stress. Psychopharmacology 179:606–612

    Article  CAS  PubMed  Google Scholar 

  23. Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, Mao X, Li Y, Fan C, Wang W, Yu SY (2022) Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Galphai-2-PKA-ASK1 signaling pathway. J Neuroinflammation 19:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 61:661–670

    Article  CAS  PubMed  Google Scholar 

  25. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  26. Keers R, Uher R (2012) Gene-environment interaction in major depression and antidepressant treatment response. Curr Psychiatry Rep 14:129–137

    Article  PubMed  Google Scholar 

  27. Bruno A, Morabito P, Spina E, Muscatello MR (2016) The role of levomilnacipran in the management of major depressive disorder: a comprehensive review. Curr Neuropharmacol 14:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee SM, Dong TS, Krause-Sorio B, Siddarth P, Milillo MM, Lagishetty V, Datta T, Aguilar-Faustino Y, Jacobs JP, Lavretsky H (2022) The intestinal microbiota as a predictor for antidepressant treatment outcome in geriatric depression: a prospective pilot study. Int Psychogeriatr 34:33–45

    Article  PubMed  Google Scholar 

  29. Naguy A (2021) Levomilnacipran for negative symptom domain schizophrenia. Prim Care Companion CNS Disord 23

  30. Rizvi SM, Shaikh S, Khan M, Biswas D, Hameed N, Shakil S (2014) Fetzima (levomilnacipran), a drug for major depressive disorder as a dual inhibitor for human serotonin transporters and beta-site amyloid precursor protein cleaving enzyme-1. CNS Neurol Disord Drug Targets 13:1427–1431

    Article  PubMed  Google Scholar 

  31. Masi G, Brovedani P (2011) The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 25:913–931

    Article  CAS  PubMed  Google Scholar 

  32. MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R (2008) Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry 64:880–883

    Article  PubMed  Google Scholar 

  33. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56:640–650

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J, Burton LE, Stanton BR, Kaplan DR, Hunter T et al (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65:895–903

    Article  CAS  PubMed  Google Scholar 

  35. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J, Voshaar RC, Elzinga BM (2011) Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry 16:1088–1095

    Article  CAS  PubMed  Google Scholar 

  37. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    Article  CAS  PubMed  Google Scholar 

  38. Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci 25:11288–11299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu F, Na L, Li Y, Chen L (2020) Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 10:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tao X, West AE, Chen WG, Corfas G, Greenberg ME (2002) A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 33:383–395

    Article  CAS  PubMed  Google Scholar 

  42. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109:E197-205

    Article  CAS  PubMed  Google Scholar 

  43. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maes M (1994) Cytokines in major depression. Biol Psychiatry 36:498–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Translational Medicine Core Facility of Shandong University for consultation and instrument availability that supported this work.

Funding

This study was supported by grants to Shu Yan Yu from the National Natural Science Foundation of China (82071513; 82271566) and the Natural Science Foundation of Shandong Province of China (ZR2021MH151; ZR2020MH152).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SYY, YW, and TL; methodology: YW, ZZ, and TL; investigation: YW, TL, SL, YL, and CW; funding acquisition: SYY; writing: YW, TL, and SYY; supervision: YF, XM, and SYY.

Corresponding authors

Correspondence to Xueqin Mao or Shuyan Yu.

Ethics declarations

Ethics Approval and Consent to Participate

The Ethics Committee at Shandong University Animal Care and Use Committee (Jinan, China) approved the protocols of this study. All experiments were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (National Research Council, 1996). All authors declare that they consent to participate and approve for the publication of this article.

Consent for Publication

All authors declared to consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Levomilnacipran ameliorated anxiety- and depression-like behaviors in rats.

2. Levomilnacipran alleviated LPS-induced dysregulation of synaptic plasticity.

3. Levomilnacipran ameliorated LPS-induced neuroinflammation.

4. Levomilnacipran activated the BDNF/TrkB mediated PI3K/Akt/mTOR pathway.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (PDF 399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhu, Z., Lan, T. et al. Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03832-8

Keywords

Navigation