Skip to main content

Advertisement

Log in

Hexahydrocurcumin Attenuates Neuronal Injury and Modulates Synaptic Plasticity in Chronic Cerebral Hypoperfusion in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dementia is the most common age-related problem due predominantly to Alzheimer’s disease (AD) and vascular dementia (VaD). It has been shown that these contributors are associated with a high amount of oxidative stress that leads to changes in neurological function and cognitive impairment. The aim of study was to explore the mechanism by which hexahydrocurcumin (HHC) attenuates oxidative stress, amyloidogenesis, phosphorylated Tau (pTau) expression, neuron synaptic function, and cognitive impairment and also the potential mechanisms involved in induced permanent occlusion of bilateral common carotid arteries occlusion (BCCAO) or 2-vessel occlusion (2VO) in rats. After surgery, rats were treated with HHC (40 mg/kg) or piracetam (600 mg/kg) by oral gavage daily for 4 weeks. The results showed that HHC or piracetam attenuated oxidative stress by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) activity, and alleviated expression of synaptic proteins (pre- and post-synaptic proteins) mediated by the Wingless/Integrated (Wnt)/β-catenin signaling pathway. Moreover, HHC or piracetam also improved synaptic plasticity via the brain-derived neurotrophic factor (BDNF)/Tyrosine receptor kinase B (TrkB)/cAMP responsive element binding protein (CREB) signaling pathway. In addition, HHC reduced amyloid beta (Aβ) production and pTau expression and improved memory impairment as evidenced by the Morris water maze. In conclusion, HHC exerted remarkable improvement in cognitive function in the 2VO rats possibly via the attenuation of oxidative stress, improvement in synaptic function, attenuation of amyloidogenesis, pTau, and neuronal injury, thereby improving cognitive performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

2VO:

The 2-vessel occlusion

4-HNE:

4-Hydroxynonenal

Aβ:

Amyloid-beta

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

BCCAO:

Bilateral common carotid artery occlusion

BDNF:

Brain-derived neurotrophic factor

BuChE:

Butyrylcholinesterase

BW:

Body weight

CBF:

Cerebral blood flow

CCA:

Common carotid arteries

CCH:

Chronic cerebral hypoperfusion

CREB:

CAMP responsive element binding protein

GAP43:

Growth Associated Protein 43

GLUTs:

Glucose transporter

GSK3β:

Glycogen synthase kinase-3 beta

HHC:

Hexahydrocurcumin

HIFs:

Hypoxia-inducible factor 1

MWM:

Morris water maze test

Nrf2:

Nuclear factor erythroid 2-related factor 2

PARP1:

Poly (ADP-ribose) polymerase-1

PSD95:

Postsynaptic protein density 95

SOD:

Superoxide dismutase

SYN:

Synaptophysin

TrkB:

Tyrosine receptor kinase B

VaD:

Vascular dementia

Wnts:

Wingless/Integrated

References

  1. Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia. JAMA 322(16):1589–1599. https://doi.org/10.1001/jama.2019.4782

    Article  PubMed  PubMed Central  Google Scholar 

  2. Majdi A, Sadigh-Eteghad S, Aghsan SR, Farajdokht F, Vatandoust SM, Namvaran A, Mahmoudi J (2020) Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev Neurosci 31(4):391–413. https://doi.org/10.1515/revneuro-2019-0089

    Article  CAS  PubMed  Google Scholar 

  3. Attems J, Jellinger KA (2014) The overlap between vascular disease and Alzheimer’s disease-lessons from pathology. BMC Med 12(1):1–12. https://doi.org/10.1186/s12916-014-0206-2

    Article  Google Scholar 

  4. Tayler H, Miners JS, Güzel Ö, MacLachlan R, Love S (2021) Mediators of cerebral hypoperfusion and blood-brain barrier leakiness in Alzheimer’s disease, vascular dementia and mixed dementia. Brain Pathol 31(4):e12935. https://doi.org/10.1111/bpa.12935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Román GC (2022) Vascular dementia revisited: diagnosis, pathogenesis, treatment, and prevention. Med Clin North Am 86(3):477–499. https://doi.org/10.1016/s0025-7125(02)00008-1

    Article  Google Scholar 

  6. Wang X, Xing A, Xu C, Cai Q, Liu H, Li L (2010) Cerebrovascular hypoperfusion induces spatial memory impairment, synaptic changes, and amyloid-β oligomerization in rats. J Alzheimers Dis 21(3):813–822. https://doi.org/10.3233/JAD-2010-100216

    Article  CAS  PubMed  Google Scholar 

  7. Sigfridsson E, Marangoni M, Hardingham GE, Horsburgh K, Fowler JH (2020) Deficiency of Nrf2 exacerbates white matter damage and microglia/macrophage levels in a mouse model of vascular cognitive impairment. J Neuroinflammation 17(1):1–15. https://doi.org/10.1186/s12974-020-02038-2

    Article  CAS  Google Scholar 

  8. Yan N, Xu Z, Qu C, Zhang J (2021) Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 98:107844. https://doi.org/10.1016/j.intimp.2021.107844

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Zhang J, Liu H, Wang J, Xin J, Deng M (2013) Changes in levels of hypoxia-induced mediators in rat hippocampus during chronic cerebral hypoperfusion. Neurochem Res 38(11):2433–2439. https://doi.org/10.1007/s11064-013-1158-1

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Gu J-h, Dai C-l, Liu Q, Iqbal K, Liu F, Gong C-X (2014) Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Front Aging Neurosci 6:10. https://doi.org/10.3389/fnagi.2014.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao Y, Gong C-X (2015) From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cell Mol Neurobiol 35(1):101–110. https://doi.org/10.1007/s10571-014-0127-9

    Article  CAS  PubMed  Google Scholar 

  12. Martinez M, Torres VI, Vio CP, Inestrosa NC (2020) Canonical Wnt signaling modulates the expression of pre-and postsynaptic components in different temporal patterns. Mol Neurobiol 57(3):1389–1404. https://doi.org/10.1007/s12035-019-01785-5

    Article  CAS  PubMed  Google Scholar 

  13. Sun F-L, Wang W, Zuo W, Xue J-L, Xu J-d, Ai H-X, Zhang L, Wang X-M et al (2014) Promoting neurogenesis via Wnt/β-catenin signaling pathway accounts for the neurorestorative effects of morroniside against cerebral ischemia injury. Eur J Pharmacol 738:214–221. https://doi.org/10.1016/j.ejphar.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  14. Shruster A, Ben-Zur T, Melamed E, Offen D (2012) Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS ONE 7(7):e40843. https://doi.org/10.1371/journal.pone.0040843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6(1):64–74. https://doi.org/10.1093/jmcb/mjt051

    Article  PubMed  Google Scholar 

  16. Kim M-S, Bang J, Jeon WK (2020) The involvement of canonical Wnt signaling in memory impairment induced by chronic cerebral hypoperfusion in mice. Transl Stroke Res 11(4):734–746. https://doi.org/10.1007/s12975-019-00748-1

    Article  CAS  PubMed  Google Scholar 

  17. Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP (2007) Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 30(1):74–78. https://doi.org/10.1248/bpb.30.74

    Article  CAS  PubMed  Google Scholar 

  18. Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–95. https://doi.org/10.1080/10408398.2015.1077195

    Article  CAS  PubMed  Google Scholar 

  19. Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, Kang N (2018) Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch Biochem Biophys 646:31–37. https://doi.org/10.1016/j.abb.2018.03.030

    Article  CAS  PubMed  Google Scholar 

  20. Thangwong P, Jearjaroen P, Govitrapong P, Tocharus C, Tocharus J (2022) Melatonin improves cognitive function by suppressing endoplasmic reticulum stress and promoting synaptic plasticity during chronic cerebral hypoperfusion in rats. Biochem Pharmacol 198:114980. https://doi.org/10.1016/j.bcp.2022.114980

    Article  CAS  PubMed  Google Scholar 

  21. Bartorelli L, Giraldi C, Saccardo M, Cammarata S, Bottini G, Fasanaro A, Trequattrini A (2005) Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer’s disease. Curr Med Res Opin 21(11):1809–1817. https://doi.org/10.1185/030079905X65655

    Article  CAS  PubMed  Google Scholar 

  22. Changtam C, de Koning HP, Ibrahim H, Sajid MS, Gould MK, Suksamrarn A (2010) Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur J Med Chem 45(3):941–56. https://doi.org/10.1016/j.ejmech.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  23. Lee S-L, Huang W-J, Lin WW, Lee S-S, Chen C-H (2005) Preparation and anti-inflammatory activities of diarylheptanoid and diarylheptylamine analogs. Bioorg Med Chem 13(22):6175–6181. https://doi.org/10.1016/j.bmc.2005.06.058

    Article  CAS  PubMed  Google Scholar 

  24. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  26. Ciacciarelli A, Sette G, Giubilei F, Orzi F (2020) Chronic cerebral hypoperfusion: an undefined, relevant entity. J Clin Neurosci 73:8–12. https://doi.org/10.1016/j.jocn.2020.01.026

    Article  PubMed  Google Scholar 

  27. Liu Z, Hu M, Lu P, Wang H, Qi Q, Xu J, Xiao Y, Fan M et al (2017) Cerebrolysin alleviates cognitive deficits induced by chronic cerebral hypoperfusion by increasing the levels of plasticity-related proteins and decreasing the levels of apoptosis-related proteins in the rat hippocampus. Neurosci Lett 651:72–78. https://doi.org/10.1016/j.neulet.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  28. Zhang N, Song C, Zhao B, Xing M, Luo L, Gordon ML, Cheng Y (2017) Neovascularization and synaptic function regulation with memantine and rosuvastatin in a rat model of chronic cerebral hypoperfusion. J Mol Neurosci 63(2):223–232. https://doi.org/10.1007/s12031-017-0974-1

    Article  CAS  PubMed  Google Scholar 

  29. Jearjaroen P, Pakdeepak K, Tocharus C, Chaichompoo W, Suksamrarn A, Tocharus J (2021) Inhibitory effect of hexahydrocurcumin on memory impairment and amyloidogenesis in dexamethasone-treated mice. Neurotox Res 39(2):266–276. https://doi.org/10.1007/s12640-020-00269-y

    Article  CAS  PubMed  Google Scholar 

  30. Wicha P, Tocharus J, Janyou A, Jittiwat J, Chaichompoo W, Suksamrarn A, Tocharus C (2020) Hexahydrocurcumin alleviated blood–brain barrier dysfunction in cerebral ischemia/reperfusion rats. Pharmacol Rep 72:659–671. https://doi.org/10.1007/s43440-019-00050-9

    Article  CAS  PubMed  Google Scholar 

  31. Orsucci D, Mancuso M, CaldarazzoIenco E, Simoncini C, Siciliano G, Bonuccelli U (2013) Vascular factors and mitochondrial dysfunction: a central role in the pathogenesis of Alzheimer’s disease. Curr Neurovasc Res 10(1):76–80. https://doi.org/10.2174/156720213804805972

    Article  CAS  PubMed  Google Scholar 

  32. Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Exp Mol Med 36(1):1–12. https://doi.org/10.1038/emm.2004.1

    Article  PubMed  Google Scholar 

  33. Ren C, Liu Y, Stone C, Li N, Li S, Li H, Cheng Z, Hu J et al (2021) Limb remote ischemic conditioning ameliorates cognitive impairment in rats with chronic cerebral hypoperfusion by regulating glucose transport. Aging Dis 12(5):1197. https://doi.org/10.14336/AD.2020.1125

    Article  PubMed  PubMed Central  Google Scholar 

  34. Singh N, Sharma G, Mishra V, Raghubir R (2012) Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 32(4):491–507. https://doi.org/10.1007/s10571-012-9803-9

    Article  CAS  PubMed  Google Scholar 

  35. Du S-Q, Wang X-R, Xiao L-Y, Tu J-F, Zhu W, He T, Liu C-Z (2017) Molecular mechanisms of vascular dementia: what can be learned from animal models of chronic cerebral hypoperfusion? Mol Neurobiol 54(5):3670–3682. https://doi.org/10.1007/s12035-016-9915-1

    Article  CAS  PubMed  Google Scholar 

  36. Wicha P, Tocharus J, Janyou A, Jittiwat J, Changtam C, Suksamrarn A, Tocharus C (2017) Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model. PLoS ONE 12(12):e0189211. https://doi.org/10.1371/journal.pone.0189211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang R, Zhang Z, Chopp M (2016) Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab 36(12):2034–2043. https://doi.org/10.1177/0271678X16674487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Shi X, Wang J, Xu Z, He J (2021) Enriched environment remedies cognitive dysfunctions and synaptic plasticity through NMDAR-Ca2+-activin A circuit in chronic cerebral hypoperfusion rats. Aging (Albany NY) 13(16):20748. https://doi.org/10.18632/aging.203462

    Article  CAS  PubMed  Google Scholar 

  39. Strittmatter SM, Vartanian T, Fishman MC (1992) GAP-43 as a plasticity protein in neuronal form and repair. J Neurobiol 23(5):507–520. https://doi.org/10.1002/neu.480230506

    Article  CAS  PubMed  Google Scholar 

  40. Liu HX, Zhang JJ, Zheng P, Zhang Y (2005) Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 139(1):169–177. https://doi.org/10.1016/j.molbrainres.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  41. Smith SE, Figley SA, Schreyer DJ, Paterson PG (2014) Protein-energy malnutrition developing after global brain ischemia induces an atypical acute-phase response and hinders expression of GAP-43. PLoS ONE 9(9):e107570. https://doi.org/10.1371/journal.pone.0107570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zuliani G, Trentini A, Rosta V, Guerrini R, Pacifico S, Bonazzi S, Guiotto A, Passaro A et al (2020) Increased blood BACE1 activity as a potential common pathogenic factor of vascular dementia and late onset Alzheimer’s disease. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-72168-3

    Article  Google Scholar 

  43. Zhiyou C, Yong Y, Shanquan S, Jun Z, Liangguo H, Ling Y, Jieyin L (2009) Upregulation of BACE1 and β-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer’s disease. Neurochem Res 34(7):1226–1235. https://doi.org/10.1007/s11064-008-9899-y

    Article  CAS  PubMed  Google Scholar 

  44. Li J-F, Wang Z, Sun Q-J, Du Y-F (2015) Expression of tau protein in rats with cognitive dysfunction induced by cerebral hypoperfusion. Int J Clin Exp Med 8(10):19682

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao F-F, Xu H, Zhang Y-w (2007) Hypoxia-inducible factor 1α (HIF-1α)-mediated hypoxia increases BACE1 expression and β-amyloid generation. J Biol Chem 282(15):10873–80. https://doi.org/10.1074/jbc.M608856200

    Article  CAS  PubMed  Google Scholar 

  46. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong C-X (2009) Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 132(7):1820–1832. https://doi.org/10.1093/brain/awp099

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18(10):610–621. https://doi.org/10.1038/nrm.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaitanya GV, Alexander JS, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8(1):1–11. https://doi.org/10.1186/1478-811X-8-31

    Article  CAS  Google Scholar 

  49. McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22(1):295–318. https://doi.org/10.1146/annurev.neuro.22.1.295

    Article  CAS  PubMed  Google Scholar 

  50. Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91(4):267–270. https://doi.org/10.1254/jphs.91.267

    Article  CAS  PubMed  Google Scholar 

  51. Ohira K, Hayashi M (2009) A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 7(4):276–285. https://doi.org/10.2174/157015909790031210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yin C, Deng Y, Liu Y, Gao J, Yan L, Gong Q (2018) Icariside II ameliorates cognitive impairments induced by chronic cerebral hypoperfusion by inhibiting the amyloidogenic pathway: involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARα and PPARγ in rats. Front Pharmacol 9:1211. https://doi.org/10.3389/fphar.2018.01211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang J, Zhang HY, Tang XC (2009) Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin 30(7):879–888. https://doi.org/10.1038/aps.2009.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Damodaran T, Müller CP, Hassan Z (2019) Chronic cerebral hypoperfusion-induced memory impairment and hippocampal long-term potentiation deficits are improved by cholinergic stimulation in rats. Pharmacol Rep 71(3):443–448. https://doi.org/10.1016/j.pharep.2019.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Royal Golden Jubilee Ph.D. program (NRCT5-RGJ63004-076) and Thailand Science Research and Innovation (TSRI) (RUG6290031), Thailand. Partial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Pranglada Jearjaroen: Conducted the experiments, performed data analysis, writing – original draft, review & editing. Phakkawat Thangwong: conducted the experiments. Chainarong Tocharus: Performed data analysis, writing – original draft, review & editing. Anusorn Lungkaphin: writing – review & editing. Waraluck Chaichompoo: Preparation of hexahydrocurcumin. Jaranwit Srijun: Preparation of hexahydrocurcumin. Apichart Suksamrarn: Preparation of hexahydrocurcumin, writing – review & editing. Jiraporn Tocharus: Conceived and designed the experiments, performed data analysis, writing – original draft, review & editing, project administration.

Corresponding author

Correspondence to Jiraporn Tocharus.

Ethics declarations

Ethical Approval

The experimental procedures were approved by the Institutional Animal Care and Use Committee of the Faculty of Medicine, Chiang Mai University (31/2563) corresponding to the guidelines established by National Institutes of Health (NIH).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1454 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jearjaroen, P., Thangwong, P., Tocharus, C. et al. Hexahydrocurcumin Attenuates Neuronal Injury and Modulates Synaptic Plasticity in Chronic Cerebral Hypoperfusion in Rats. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03821-x

Keywords

Navigation