Skip to main content

Advertisement

Log in

TLR2 Mediates Microglial Activation and Contributes to Central Sensitization in a Recurrent Nitroglycerin-induced Chronic Migraine Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Central sensitization is an important pathophysiological mechanism underlying chronic migraine (CM). Previous studies have shown that microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to central sensitization. Toll-like receptor 2 (TLR2) is a receptor expressed on the membrane of microglia and participates in central sensitization in inflammatory and chronic pain; however, its role in CM is unclear. Therefore, this study investigated TLR2 involvement in CM in detail. Mice treated with recurrent nitroglycerin (NTG) were used as a CM model. Hyperalgesia was assessed using a 50% paw mechanical threshold and a 50% periorbital threshold on a Von Frey filament pain meter. Western blotting and immunofluorescence analyses were used to detect the expression of TLR2, microglia, c-fos and CGRP in TNC. The expression of inflammatory factors (IL-6, IL-1β、 IL-10、TNF-α and IFN-β1) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). A selective TLR2 antagonist (C29) was systematically administered to observe its effect on hyperalgesia, microglia activation and the expression of c-fos, CGRP and inflammatory factors. Recurrent administration of NTG resulted in acute and chronic hypersensitivity, accompanied by upregulation of TLR2 expression and microglial activation in TNC. C29 partially inhibited pain hypersensitivity. C29 suppressed microglial activation induced by NTG administration. Inhibition of TLR2 reduced the expression of c-fos and CGRP in TNC after NTG treatment. C29 inhibited the expression of inflammatory mediators in TNC. These data showed that microglial TLR2 plays a critical role in the pathogenesis of CM by regulating microglial activation in TNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CM:

Chronic migraine

TNC:

Trigeminal nucleus caudalis

TLRs:

Toll-like receptors

TLR2:

Toll-like receptor 2

TLR3:

Toll-like receptor 3

TLR4:

Toll-like receptor 4

CSD:

Cortical Spreading Depression

NTG:

Nitroglycerin

VEH:

Vehicle

IL-6:

Interleukin-6

IL-1β:

Interleukin-1β

IL-10:

Interleukin-10

TNF-α:

Tumor necrosis factor-α

IFN-β1:

Interferon-β1

PBS:

Phosphate-buffered saline

IF:

Immunofluorescence

PFA:

Paraformaldehyde

OCT:

Optimal cutting temperature compound

DAPI:

4’,6-Diamidino-2-phenylindole

qRT-PCR:

Quantitative real-time polymerase chain reaction

CGRP:

Calcitonin gene related peptide

CSF1:

Colony-stimulating factor 1

NF-κB:

Nuclearfactor-κB

References

  1. Schwedt TJ (2014) Chronic migraine. Bmj 348:g1416. https://doi.org/10.1136/bmj.g1416

    Article  PubMed  Google Scholar 

  2. Buse DC, Manack AN, Fanning KM, Serrano D, Reed ML, Turkel CC et al (2012) Chronic migraine prevalence, disability, and sociodemographic factors: results from the American Migraine Prevalence and Prevention Study. Headache 52(10):1456–1470. https://doi.org/10.1111/j.1526-4610.2012.02223.x

    Article  PubMed  Google Scholar 

  3. Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L et al (2010) Global prevalence of chronic migraine: a systematic review. Cephalalgia 30(5):599–609. https://doi.org/10.1111/j.1468-2982.2009.01941.x

    Article  CAS  PubMed  Google Scholar 

  4. Moschiano F, D'Amico D, Schieroni F, Bussone G (2003) Neurobiology of chronic migraine. Neurol Sci 24(Suppl 2):S94–S96. https://doi.org/10.1007/s100720300051

    Article  PubMed  Google Scholar 

  5. Lipton RB, Pan J (2004) Is migraine a progressive brain disease? JAMA 291(4):493–494. https://doi.org/10.1001/jama.291.4.493

    Article  CAS  PubMed  Google Scholar 

  6. Arnold M (2018) Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38(1):1–211. https://doi.org/10.1177/0333102417738202

    Article  Google Scholar 

  7. Aurora SK, Brin MF (2017) Chronic migraine: an update on physiology, imaging, and the mechanism of action of two available pharmacologic therapies. Headache 57(1):109–125. https://doi.org/10.1111/head.12999

    Article  PubMed  Google Scholar 

  8. Long T, He W, Pan Q, Zhang S, Zhang Y, Liu C et al (2018) Microglia P2X4 receptor contributes to central sensitization following recurrent nitroglycerin stimulation. J Neuroinflammation 15(1):245. https://doi.org/10.1186/s12974-018-1285-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mathew NT (2011) Pathophysiology of chronic migraine and mode of action of preventive medications. Headache 51(Suppl 2):84–92. https://doi.org/10.1111/j.1526-4610.2011.01955.x

    Article  PubMed  Google Scholar 

  10. Bartley J (2009) Could glial activation be a factor in migraine? Med Hypotheses 72(3):255–257. https://doi.org/10.1016/j.mehy.2008.09.048

    Article  CAS  PubMed  Google Scholar 

  11. Su M, Ran Y, He Z, Zhang M, Hu G, Tang W et al (2018) Inhibition of toll-like receptor 4 alleviates hyperalgesia induced by acute dural inflammation in experimental migraine. Mol Pain 14:1744806918754612. https://doi.org/10.1177/1744806918754612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10(11):1361–1368. https://doi.org/10.1038/nn1992

    Article  CAS  PubMed  Google Scholar 

  13. Xie YF, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ (2007) Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun 21(5):634–641. https://doi.org/10.1016/j.bbi.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  14. Liu C, Zhang Y, Liu Q, Jiang L, Li M, Wang S et al (2018) P2X4-receptor participates in EAAT3 regulation via BDNF-TrkB signaling in a model of trigeminal allodynia. Mol Pain 14:1744806918795930. https://doi.org/10.1177/1744806918795930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jing F, Zhang Y, Long T, He W, Qin G, Zhang D et al (2019) P2Y12 receptor mediates microglial activation via RhoA/ROCK pathway in the trigeminal nucleus caudalis in a mouse model of chronic migraine. J Neuroinflammation 16(1):217. https://doi.org/10.1186/s12974-019-1603-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walker FR, Beynon SB, Jones KA, Zhao Z, Kongsui R, Cairns M et al (2014) Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms. Brain Behav Immun 37:1–14. https://doi.org/10.1016/j.bbi.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  17. Kim I, Mlsna LM, Yoon S, Le B, Yu S, Xu D et al (2015) A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers. Brain Behav 5(12):e00403. https://doi.org/10.1002/brb3.403

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferrini F, De Koninck Y (2013) Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013:429815. https://doi.org/10.1155/2013/429815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA et al (2010) Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 30(15):5437–5450. https://doi.org/10.1523/JNEUROSCI.5169-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 28(2):101–107. https://doi.org/10.1016/j.tins.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Zhao H, Alam A, Chen Q, A Eusman M, Pal A, Eguchi S, Wu L, Ma D (2017) The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth 118(4):504–516. https://doi.org/10.1093/bja/aex006

    Article  CAS  PubMed  Google Scholar 

  22. Kursun O, Yemisci M, van den Maagdenberg A, Karatas H (2021) Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain 22(1):55. https://doi.org/10.1186/s10194-021-01271-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bodea LG, Wang Y, Linnartz-Gerlach B, Kopatz J, Sinkkonen L, Musgrove R et al (2014) Neurodegeneration by activation of the microglial complement-phagosome pathway. J Neurosci 34(25):8546–8556. https://doi.org/10.1523/JNEUROSCI.5002-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghaemi A, Sajadian A, Khodaie B, Lotfinia AA, Lotfinia M, Aghabarari A, Khaleghi Ghadiri M, Meuth S et al (2016) Immunomodulatory effect of toll-like receptor-3 ligand poly I: C on cortical spreading depression. Mol Neurobiol 53(1):143–154. https://doi.org/10.1007/s12035-014-8995-z

    Article  CAS  PubMed  Google Scholar 

  25. Perry CJ, Blake P, Buettner C, Papavassiliou E, Schain AJ, Bhasin MK et al (2016) Upregulation of inflammatory gene transcripts in periosteum of chronic migraineurs: Implications for extracranial origin of headache. Ann Neurol 79(6):1000–1013. https://doi.org/10.1002/ana.24665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takizawa T, Shibata M, Kayama Y, Shimizu T, Toriumi H, Ebine T et al (2017) High-mobility group box 1 is an important mediator of microglial activation induced by cortical spreading depression. J Cereb Blood Flow Metab 37(3):890–901. https://doi.org/10.1177/0271678X16647398

    Article  CAS  PubMed  Google Scholar 

  27. Ghaemi A, Alizadeh L, Babaei S, Jafarian M, Khaleghi Ghadiri M, Meuth SG et al (2017) Astrocyte-mediated inflammation in cortical spreading depression. Cephalalgia 38(4):626–638. https://doi.org/10.1177/0333102417702132

    Article  PubMed  Google Scholar 

  28. Liu X, Yang W, Zhu C, Sun S, Wu S, Wang L et al (2022) Toll-like receptors and their role in neuropathic pain and migraine. Mol Brain 15(1):73. https://doi.org/10.1186/s13041-022-00960-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong Q, Lin Y, Lu Z, Xiao Z (2020) Microglia-astrocyte cross talk through IL-18/IL-18R signaling modulates migraine-like behavior in experimental models of migraine. Neuroscience 451:207–215. https://doi.org/10.1016/j.neuroscience.2020.10.019

    Article  CAS  PubMed  Google Scholar 

  30. Liu T, Gao YJ, Ji RR (2012) Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull 28(2):131–144. https://doi.org/10.1007/s12264-012-1219-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi XQ, Zekki H, Zhang J (2011) The role of TLR2 in nerve injury-induced neuropathic pain is essentially mediated through macrophages in peripheral inflammatory response. Glia 59(2):231–241. https://doi.org/10.1002/glia.21093

    Article  PubMed  Google Scholar 

  32. Yang H, Wu L, Deng H, Chen Y, Zhou H, Liu M et al (2020) Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-kappaB signaling pathway in spinal microglia. J Neuroinflammation 17(1):154. https://doi.org/10.1186/s12974-020-1731-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen WJ, Niu JQ, Chen YT, Deng WJ, Xu YY, Liu J et al (2021) Unilateral facial injection of Botulinum neurotoxin A attenuates bilateral trigeminal neuropathic pain and anxiety-like behaviors through inhibition of TLR2-mediated neuroinflammation in mice. J Headache Pain 22(1):38. https://doi.org/10.1186/s10194-021-01254-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lim H, Lee J, You B, Oh JH, Mok HJ, Kim YS et al (2020) GT1b functions as a novel endogenous agonist of toll-like receptor 2 inducing neuropathic pain. EMBO J 39(6):e102214. https://doi.org/10.15252/embj.2019102214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stokes JA, Cheung J, Eddinger K, Corr M, Yaksh TL (2013) Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice. J Neuroinflammation 10:148. https://doi.org/10.1186/1742-2094-10-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Tian S, Wang H, Liu P, Zheng H, Wu L et al (2020) Botulinum toxin type A alleviates neuropathic pain and suppresses inflammatory cytokines release from microglia by targeting TLR2/MyD88 and SNAP23. Cell Biosci 10(1):141. https://doi.org/10.1186/s13578-020-00501-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber MD, Frank MG, Sobesky JL, Watkins LR, Maier SF (2013) Blocking toll-like receptor 2 and 4 signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a subsequent immune challenge. Brain Behav Immun 32:112–121. https://doi.org/10.1016/j.bbi.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  38. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110. https://doi.org/10.1016/0304-3959(83)90201-4

    Article  PubMed  Google Scholar 

  39. Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274. https://doi.org/10.1016/j.pain.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  40. Zhang M, Xie ZF, Zhang RT, Chen DK, Gu M, Cui SC et al (2018) Novel substituted pyrazolone derivatives as AMP-activated protein kinase activators to inhibit lipid synthesis and reduce lipid accumulation in ob/ob mice. Acta Pharmacol Sin 39(10):1622–1632. https://doi.org/10.1038/aps.2017.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mistry P, Laird MH, Schwarz RS, Greene S, Dyson T, Snyder GA et al (2015) Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc Natl Acad Sci USA 112(17):5455–5460. https://doi.org/10.1073/pnas.1422576112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Louter MA, Bosker JE, van Oosterhout WP, van Zwet EW, Zitman FG, Ferrari MD et al (2013) Cutaneous allodynia as a predictor of migraine chronification. Brain 136(Pt 11):3489–3496. https://doi.org/10.1093/brain/awt251

    Article  PubMed  Google Scholar 

  43. Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI et al (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgi 30(2):170–178. https://doi.org/10.1111/j.1468-2982.2009.01864.x

    Article  CAS  Google Scholar 

  44. Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH (2000) An association between migraine and cutaneous allodynia. Ann Neurol 47(5):614–624

    Article  CAS  PubMed  Google Scholar 

  45. Vuralli D, Wattiez AS, Russo AF, Bolay H (2019) Behavioral and cognitive animal models in headache research. J Headache Pain 20(1):11. https://doi.org/10.1186/s10194-019-0963-6

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Pan Q, Tian R, Wen Q, Qin G, Zhang D et al (2021) Repeated oxytocin prevents central sensitization by regulating synaptic plasticity via oxytocin receptor in a chronic migraine mouse model. J Headache Pain 22(1):84. https://doi.org/10.1186/s10194-021-01299-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bonin RP, Bories C, De Koninck Y (2014) A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain 10:26. https://doi.org/10.1186/1744-8069-10-26

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  49. Kooshki R, Abbasnejad M, Shamsizadeh A, Raoof M, Askari-Zahabi K, Esmaeili-Mahani S (2020) Physical exercise enhances vulnerability to migraine headache associated with CGRP up-expression in trigeminal nucleus caudalis of stressed rats. Neurol Res 42(11):952–958. https://doi.org/10.1080/01616412.2020.1794243

    Article  CAS  PubMed  Google Scholar 

  50. Khalilzadeh M, Panahi G, Rashidian A, Hadian MR, Abdollahi A, Afshari K et al (2018) The protective effects of sumatriptan on vincristine - induced peripheral neuropathy in a rat model. Neurotoxicology 67:279–286. https://doi.org/10.1016/j.neuro.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  51. Kooshki R, Abbasnejad M, Esmaeili-Mahani S, Raoof M, Sheibani V (2020) Activation orexin 1 receptors in the ventrolateral periaqueductal gray matter attenuate nitroglycerin-induced migraine attacks and calcitonin gene related peptide up-regulation in trigeminal nucleus caudalis of rats. Neuropharmacology 178:107981. https://doi.org/10.1016/j.neuropharm.2020.107981

    Article  CAS  PubMed  Google Scholar 

  52. De La Cruz P, Gee L, Walling I, Morris B, Chen N, Kumar V et al (2015) Treatment of allodynia by occipital nerve stimulation in chronic migraine rodent. Neurosurgery 77(3):479–485. https://doi.org/10.1227/neu.0000000000000846

    Article  PubMed  Google Scholar 

  53. Liu T, Han Q, Chen G, Huang Y, Zhao LX, Berta T et al (2016) Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 157(4):806–817. https://doi.org/10.1097/j.pain.0000000000000439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang L, Zhang Y, Jing F, Long T, Qin G, Zhang D et al (2021) P2X7R-mediated autophagic impairment contributes to central sensitization in a chronic migraine model with recurrent nitroglycerin stimulation in mice. J Neuroinflammation 18(1):5. https://doi.org/10.1186/s12974-020-02056-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Young K, Morrison H (2018) Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J Vis Exp 136. https://doi.org/10.3791/57648

  56. He W, Long T, Pan Q, Zhang S, Zhang Y, Zhang D et al (2019) Microglial NLRP3 inflammasome activation mediates IL-1β release and contributes to central sensitization in a recurrent nitroglycerin-induced migraine model. J Neuroinflammation 16(1):78. https://doi.org/10.1186/s12974-019-1459-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Iyengar S, Ossipov MH, Johnson KW (2017) The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 158(4):543–559. https://doi.org/10.1097/j.pain.0000000000000831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tipton AF, Tarash I, McGuire B, Charles A, Pradhan AA (2016) The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia 36(11):1048–1056. https://doi.org/10.1177/0333102415623070

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28(19):4949–4956. https://doi.org/10.1523/JNEUROSCI.0323-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang J, Gandini MA, Chen L, M'Dahoma S, Stemkowski PL, Chung H et al (2020) Hyperactivity of innate immunity triggers pain via TLR2-IL-33-mediated neuroimmune crosstalk. Cell Rep 33(1):108233. https://doi.org/10.1016/j.celrep.2020.108233

    Article  CAS  PubMed  Google Scholar 

  61. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA 104(34):13798–13803. https://doi.org/10.1073/pnas.0702553104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9. https://doi.org/10.1016/j.smim.2003.10.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Academician Wang Longde for his technical guidance in this study. In addition, we are sincerely grateful to all the staff of Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences.

Funding

This work was supported by the Gansu Provincial Neurology Clinical Medical Research Center (Grant numbers: 20JR10FA663), Cuiying Technology Innovation Program of Lanzhou University Second Hospital (Grant numbers: CY2022-QN-B03) and Academician Wang Longde Expert Workstation of Lanzhou University Second Hospital.

Author information

Authors and Affiliations

Authors

Contributions

XJL, ZMG and ZYL contributed to the work design. Animal behavior experiments were performed by XJL, STS, BY and SYW. Molecular biology experiments were performed by XJL, WPY and CLZ. ZYL and WPY performed the statistical analysis. LXJ wrote and completed the manuscript. ZMG, LDW, ZYL and CLZ revised the manuscript. All authors read and approved the final manuscript and agreed to take responsibility for all aspects of the work.

Corresponding authors

Correspondence to Zhiyan Liu or Zhaoming Ge.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the Animal Ethics Committee of Lanzhou University Second Hospital.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, W., Zhu, C. et al. TLR2 Mediates Microglial Activation and Contributes to Central Sensitization in a Recurrent Nitroglycerin-induced Chronic Migraine Model. Mol Neurobiol 61, 3697–3714 (2024). https://doi.org/10.1007/s12035-023-03781-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03781-2

Keywords

Navigation