Skip to main content
Log in

The Molecular Pathway of p75 Neurotrophin Receptor (p75NTR) in Parkinson’s Disease: The Way of New Inroads

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disease of the brain. PD is characterized by motor and non-motor symptoms. The p75 neurotrophin receptor (p75NTR) is a functional receptor for different growth factors including pro-brain derived neurotrophic factor (pro-BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Consequently, this review aimed to illustrate the detrimental and beneficial role of p75NTR in PD. Diverse studies showed that p75NTR and its downstream signaling are intricate in the pathogenesis of PD. Nevertheless, pro-apoptotic and pro-survival pathways mediated by p75NTR in PD were not fully clarified. Of note, p75NTR plays a critical role in the regulation of dopaminergic neuronal survival and apoptosis in the CNS. Particularly, p75NTR can induce selective apoptosis of dopaminergic neurons and progression of PD. In addition, p75NTR signaling inhibits the expression of transcription factors which are essential for the survival of dopaminergic neurons. Also, p75NTR expression is connected with the severity of dopaminergic neuronal injury. These verdicts implicate p75NTR signaling in the pathogenesis of PD, though the underlying mechanistic pathways remain not elucidated. Collectively, the p75NTR signaling pathway induces a double-sword effect either detrimental or beneficial depending on the ligands and status of PD neuropathology. Therefore, p75NTR signaling seems to be protective via phosphoinositide 3-kinase (PI3K)/AKT and Bcl-2 and harmful via activation of JNK, caspase 3, nuclear factor kappa B (NF-κB), and RhoA pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Underwood CK, Coulson EJ (2008) The p75 neurotrophin receptor. Int J Biochem Cell Biol 40(9):1664–1668

    Article  CAS  PubMed  Google Scholar 

  2. Kuhn K, Edamura K, Bhatia N, Cheng I, Clark S, Haynes C et al (2020) Molecular dissection of TNFR-TNFα bidirectional signaling reveals both cooperative and antagonistic interactions with p75 neurotrophic factor receptor in axon patterning. Mol Cell Neurosci 103:103467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paudel YN, Angelopoulou E, Jones NC, O’Brien TJ, Kwan P, Piperi C et al (2019) Tau related pathways as a connecting link between epilepsy and Alzheimer’s disease. ACS Chem Neurosci 10(10):4199–4212

    Article  CAS  PubMed  Google Scholar 

  4. Manti S, Xerra F, Spoto G, Butera A, Gitto E, Di Rosa G et al (2023) Neurotrophins: expression of brain–lung axis development. Int J Mol Sci 24(8):7089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scuri M, Samsell L, Piedimonte G (2010) The role of neurotrophins in inflammation and allergy. Inflamm Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued) 9(3):173–80

    CAS  Google Scholar 

  6. Ismail NA, Leong Abdullah MFI, Hami R, Ahmad Yusof H (2020) A narrative review of brain-derived neurotrophic factor (BDNF) on cognitive performance in Alzheimer’s disease. Growth Factors 38(3–4):210–225

    Article  CAS  PubMed  Google Scholar 

  7. Bao X, Shi J, Xie F, Liu Z, Yu J, Chen W et al (2018) Proteolytic release of the p75NTR intracellular domain by ADAM10 promotes metastasis and resistance to anoikis. Cancer Res 78(9):2262–2276

    Article  CAS  PubMed  Google Scholar 

  8. Skeldal S, Matusica D, Nykjaer A, Coulson EJ (2011) Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling? Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75NTR. BioEssays 33(8):614–625. https://doi.org/10.1002/bies.201100036

    Article  CAS  PubMed  Google Scholar 

  9. Goncharuk SA, Artemieva LE, Nadezhdin KD, Arseniev AS, Mineev KS (2020) Revising the mechanism of p75NTR activation: intrinsically monomeric state of death domains invokes the “helper” hypothesis. Sci Rep 10(1):13686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sankorrakul K, Qian L, Thangnipon W, Coulson EJ (2021) Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 158(6):1292–1306

    Article  CAS  PubMed  Google Scholar 

  11. Wei Z, Yang C, Feng K, Guo S, Huang Z, Wang Y et al (2023) p75NTR enhances cognitive dysfunction in a mouse Alzheimer’s disease model by inhibiting microRNA-210-3p-mediated PCYT2 through activation of NF-κB. Int J Biol Macromol 225:404–415

    Article  CAS  PubMed  Google Scholar 

  12. Fudalej E, Justyniarska M, Kasarełło K, Dziedziak J, Szaflik JP, Cudnoch-Jędrzejewska A (2021) Neuroprotective factors of the retina and their role in promoting survival of retinal ganglion cells: a review. Ophthalmic Res 64(3):345–355

    Article  CAS  PubMed  Google Scholar 

  13. Eggert S, Kins S, Endres K, Brigadski T (2022) Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer’s disease. Biol Chem 403(1):43–71

    Article  CAS  PubMed  Google Scholar 

  14. Riolo G, Ricci C, De Angelis N, Marzocchi C, Guerrera G, Borsellino G et al (2022) BDNF and pro-BDNF in amyotrophic lateral sclerosis: a new perspective for biomarkers of neurodegeneration. Brain Sci 12(5):617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blondy S, Christou N, David V, Verdier M, Jauberteau M-O, Mathonnet M et al (2019) Neurotrophins and their involvement in digestive cancers. Cell Death Dis 10(2):123

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA et al (2023) Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: novel aspects and future horizon in a new frontier. Biochem Pharmacol 210:115461

    Article  CAS  PubMed  Google Scholar 

  17. Zhang N, Kisiswa L, Ramanujan A, Li Z, Sim EW, Tian X et al (2021) Structural basis of NF-κB signaling by the p75 neurotrophin receptor interaction with adaptor protein TRADD through their respective death domains. J Biol Chem 297(2):100916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt SI, Blaabjerg M, Freude K, Meyer M (2022) RhoA signaling in neurodegenerative diseases. Cells 11(9):1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rashidbenam Z, Ozturk E, Pagnin M, Theotokis P, Grigoriadis N, Petratos S (2023) How does Nogo receptor influence demyelination and remyelination in the context of multiple sclerosis? Front Cell Neurosci 17:1197492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zarneshan SN, Fakhri S, Khan H (2022) Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: a mechanistic approach. Pharmacol Res 177:106099

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Yung K, Chan Y, Shum D, Bolam J (2008) The proNGF-p75NTR-sortilin signalling complex as new target for the therapeutic treatment of Parkinson’s disease. CNS Neurol Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 7(6):512–23

    CAS  Google Scholar 

  22. Liu Z, Yan A, Zhao J, Yang S, Song L, Liu Z (2021) The p75 neurotrophin receptor as a novel intermediate in L-dopa-induced dyskinesia in experimental Parkinson’s disease. Exp Neurol 342:113740

    Article  CAS  PubMed  Google Scholar 

  23. Al‐kuraishy HM, Al‐Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GES (2023) SARS‐COV‐2 infection and Parkinson’s disease: possible links and perspectives. J Neurosci Res

  24. Al-kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GES (2023) SARS-COV-2 infection and Parkinson’s disease: possible links and perspectives. J Neurosci Res 101(6):952–975

    Article  CAS  PubMed  Google Scholar 

  25. Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE-S (2023) A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson’s disease: beneficial or detrimental effects. Inflammopharmacology 31(2):673–688

    Article  CAS  PubMed  Google Scholar 

  26. Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Jabir MS, Negm WA, et al (2023) Metformin role in Parkinson’s disease: a double-sword effect. Mol Cell Biochem:1–17.

  27. Batiha GE-S, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E (2023) SIRT1 pathway in Parkinson’s disease: a faraway snapshot but so close. Inflammopharmacology 31(1):37–56

    Article  CAS  PubMed  Google Scholar 

  28. Alrouji M, Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Jabir MS, et al (2023) NF‐κB/NLRP3 inflammasome axis and risk of Parkinson’s disease in type 2 diabetes mellitus: a narrative review and new perspective. J Cell Mol Med

  29. Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GE-S (2023) DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson’s disease: a mutual relationship. Pharmacol Rep 1–14

  30. Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Abusudah WF, Almohmadi NH, Eldahshan OA, et al (2023) Insights on benzodiazepines’ potential in Alzheimer’s disease. Life Sci 121532

  31. Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE-S (2023) A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson’s disease: beneficial or detrimental effects. Inflammopharmacology 2023/03/24

  32. Heras-Garvin A, Stefanova N (2020) From synaptic protein to prion: the long and controversial journey of α-synuclein. Front Synaptic Neurosci 12:584536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Al-Kuraishy HM, Abdulhadi MH, Hussien NR, Al-Niemi MS, Rasheed HA, Al-Gareeb AI (2020) Involvement of orexinergic system in psychiatric and neurodegenerative disorders: a scoping review. Brain Circulation 6(2):70

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu B, Fan F, Liu Y, Liu Y, Zhou L, Yu H (2023) Distinct effects of familial Parkinson’s disease-associated mutations on α-synuclein phase separation and amyloid aggregation. Biomolecules 13(5):726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A (2020) Back and to the future: from neurotoxin-induced to human Parkinson’s disease models. Curr Protoc Neurosci 91(1):e88

    Article  PubMed  Google Scholar 

  36. Chung SJ, Yoo HS, Lee YH, Lee PH, Sohn YH (2019) Heterogeneous patterns of striatal dopamine loss in patients with young-versus old-onset Parkinson’s disease: impact on clinical features. J Mov Disord 12(2):113

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P (2019) Triggers, facilitators, and aggravators: redefining Parkinson’s disease pathogenesis. Trends Neurosci 42(1):4–13

    Article  CAS  PubMed  Google Scholar 

  38. Consonni A, Miglietti M, De Luca CMG, Cazzaniga FA, Ciullini A, Dellarole IL et al (2022) Approaching the gut and nasal microbiota in Parkinson’s disease in the era of the seed amplification assays. Brain Sci 12(11):1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Z, Shen C, Li H, Tong J, Wu Y, Ma Y et al (2023) NOD-like receptor NLRC5 promotes neuroinflammation and inhibits neuronal survival in Parkinson’s disease models. J Neuroinflammation 20(1):1–21

    Article  Google Scholar 

  40. Hou X, Watzlawik JO, Fiesel FC, Springer W (2020) Autophagy in Parkinson’s disease. J Mol Biol 432(8):2651–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kung H-C, Lin K-J, Kung C-T, Lin T-K (2021) Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines 9(8):918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang J-J, Feng S, Chen X-D, Huang H, Mao M, Wang H-Y et al (2021) The effects of P75NTR on learning memory mediated by hippocampal apoptosis and synaptic plasticity. Curr Pharm Des 27(4):531–539

    Article  CAS  PubMed  Google Scholar 

  43. Xiong LL, Chen L, Deng IB, Zhou XF, Wang TH (2022) P75 neurotrophin receptor as a therapeutic target for drug development to treat neurological diseases. Eur J Neurosci 56(8):5299–5318

    Article  CAS  PubMed  Google Scholar 

  44. Simmons DA, Mills BD, Butler RR III, Kuan J, McHugh TL, Akers C et al (2021) Neuroimaging, urinary, and plasma biomarkers of treatment response in Huntington’s disease: preclinical evidence with the p75 NTR ligand LM11A-31. Neurotherapeutics 18:1039–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suelves N, Miguez A, López-Benito S, Barriga GG-D, Giralt A, Alvarez-Periel E et al (2019) Early downregulation of p75 NTR by genetic and pharmacological approaches delays the onset of motor deficits and striatal dysfunction in Huntington’s disease mice. Mol Neurobiol 56:935–953

    Article  CAS  PubMed  Google Scholar 

  46. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ et al (2022) Amyotrophic lateral sclerosis. Lancet 400(10360):1363–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shu Y-H, Lu X-M, Wei J-X, Xiao L, Wang Y-T (2015) Update on the role of p75NTR in neurological disorders: a novel therapeutic target. Biomed Pharmacother 76:17–23

    Article  CAS  PubMed  Google Scholar 

  48. Küst B, Brouwer N, Mantingh I, Boddeke H, Copray J (2003) Reduced p75NTR expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 4(2):100–105

    Article  PubMed  Google Scholar 

  49. Turner BJ, Murray SS, Piccenna LG, Lopes EC, Kilpatrick TJ, Cheema SS (2004) Effect of p75 neurotrophin receptor antagonist on disease progression in transgenic amyotrophic lateral sclerosis mice. J Neurosci Res 78(2):193–199

    Article  CAS  PubMed  Google Scholar 

  50. Al-kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE-S (2022) Benzodiazepines in Alzheimer’s disease: beneficial or detrimental effects. Inflammopharmacology 2022/11/23

  51. Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, et al (2022) A potential link between visceral obesity and risk of Alzheimer’s disease. Neurochem Res 2022/11/21

  52. Al-kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE-S (2023) Long-term use of metformin and Alzheimer’s disease: beneficial or detrimental effects. Inflammopharmacology 2023/02/28

  53. AlAnazi FH, Al-Kuraishy HM, Alexiou A, Papadakis M, Ashour MHM, Alnaaim SA, et al (2023) Primary hypothyroidism and Alzheimer’s disease: a tale of two. Cell Mol Neurobiol 1–12

  54. Bruno F, Abondio P, Montesanto A, Luiselli D, Bruni AC, Maletta R (2023) The nerve growth factor receptor (NGFR/p75NTR): a major player in Alzheimer’s disease. Int J Mol Sci 24(4):3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sáez ET, Pehar M, Vargas MR, Barbeito L, Maccioni RB (2006) Production of nerve growth factor by β-amyloid-stimulated astrocytes induces p75NTR-dependent tau hyperphosphorylation in cultured hippocampal neurons. J Neurosci Res 84(5):1098–1106

    Article  PubMed  Google Scholar 

  56. Costantini C, Weindruch R, Della Valle G, Puglielli L (2005) A TrkA-to-p75NTR molecular switch activates amyloid β-peptide generation during aging. Biochem J 391(1):59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rabizadeh S, Bitler CM, Butcher LL, Bredesen DE (1994) Expression of the low-affinity nerve growth factor receptor enhances beta-amyloid peptide toxicity. Proc Natl Acad Sci 91(22):10703-10706

  58. Hu Y, Lee X, Shao Z, Apicco D, Huang G, Gong B, et al (2013) A DR6/p75NTR complex is responsible for β-amyloid-induced cortical neuron death. Cell Death Dis 4(4):e579-e

  59. Fombonne J, Rabizadeh S, Banwait S, Mehlen P, Bredesen DE (2009) Selective vulnerability in Alzheimer’s disease: amyloid precursor protein and p75NTR interaction. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 65(3):294–303

    Article  CAS  Google Scholar 

  60. Frade JM, López-Sánchez N (2010) A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75NTR. Cell Cycle 9(10):1934–1941

    Article  CAS  PubMed  Google Scholar 

  61. Zeng F, Lu J-J, Zhou X-F, Wang Y-J (2011) Roles of p75NTR in the pathogenesis of Alzheimer’s disease: a novel therapeutic target. Biochem Pharmacol 82(10):1500–1509

    Article  CAS  PubMed  Google Scholar 

  62. Jiao S, Bu X, Liu Y, Wang Q, Liu C, Yao X, et al (2015) Differential levels of p75NTR ectodomain in CSF and blood in patients with Alzheimer’s disease: a novel diagnostic marker. Transl Psychiatr 5(10):e650-e

  63. Yao X, Jiao S, Saadipour K, Zeng F, Wang Q, Zhu C et al (2015) p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer’s disease. Mol Psychiatry 20(11):1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y-J, Wang X, Lu J-J, Li Q-X, Gao C-Y, Liu X-H et al (2011) p75NTR regulates Aβ deposition by increasing Aβ production but inhibiting Aβ aggregation with its extracellular domain. J Neurosci 31(6):2292–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou X-F, Wang Y-J (2011) The p75NTR extracellular domain: a potential molecule regulating the solubility and removal of amyloid-β. Prion 5(3):161–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alavian KN, Sgadò P, Alberi L, Subramaniam S, Simon HH (2009) Elevated P75 NTR expression causes death of engrailed-deficient midbrain dopaminergic neurons by Erk1/2 suppression. Neural Dev 4:1–13

    Article  Google Scholar 

  67. Wang Y-Q, Bian G-L, Bai Y, Cao R, Chen L-W (2008) Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int 53(3–4):56–62

    Article  CAS  PubMed  Google Scholar 

  68. Savall ASP, Fidelis EM, de Mello JD, Quines CB, Denardin CC, Marques LS et al (2023) Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: the involvement of pro-BDNF/p75NTR pathway. Life Sci 324:121711

    Article  CAS  PubMed  Google Scholar 

  69. Radomski SA (2022) Assay development for investigating the contributions of p75 neurotrophin receptor (p75NTR) signaling to neurodegeneration associated with Parkinson’s disease

  70. Chen Y, Hou Y, Yang J, Du R, Chen C, Chen F et al (2018) P75 involved in the ubiquitination of α-synuclein in Rotenone-based Parkinson’s disease models. Neuroscience 388:367–373

    Article  CAS  PubMed  Google Scholar 

  71. Xu X-M, Dong M-X, Feng X, Liu Y, Pan J-X, Jia S-Y et al (2018) Decreased serum proNGF concentration in patients with Parkinson’s disease. Neurol Sci 39:91–96

    Article  PubMed  Google Scholar 

  72. Li W-W, Shen Y-Y, Chen D-W, Li H-Y, Shi Q-Q, Mei J et al (2019) Genetic association between NGFR, ADAM17 gene polymorphism, and Parkinson’s disease in the Chinese Han population. Neurotox Res 36:463–471

    Article  CAS  PubMed  Google Scholar 

  73. Lange J, Lunde KA, Sletten C, Møller SG, Tysnes O-B, Alves G et al (2015) Association of a BACE1 gene polymorphism with Parkinson’s disease in a Norwegian population. Parkinson’s Dis 2015:973298. https://doi.org/10.1155/2015/973298

    Article  CAS  Google Scholar 

  74. Shepheard SR, Chataway T, Schultz DW, Rush RA, Rogers M-L (2014) The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis. PLoS One 9(1):e87398

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mufson EJ, Presley LN, Kordower JH (1991) Nerve growth factor receptor immunoreactivity within the nucleus basalis (Ch4) in Parkinson’s disease: reduced cell numbers and co-localization with cholinergic neurons. Brain Res 539(1):19–30

    Article  CAS  PubMed  Google Scholar 

  76. Long H-Z, Cheng Y, Zhou Z-W, Luo H-Y, Wen D-D, Gao L-C (2021) PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front Pharmacol 12:648636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jing P-B, Cao D-L, Li S-S, Zhu M, Bai X-Q, Wu X-B et al (2018) Chemokine receptor CXCR3 in the spinal cord contributes to chronic itch in mice. Neurosci Bull 34:54–63

    Article  CAS  PubMed  Google Scholar 

  78. Gong J, Zhang L, Zhang Q, Li X, Xia X-J, Liu Y-Y et al (2018) Lentiviral vector-mediated SHC3 silencing exacerbates oxidative stress injury in nigral dopamine neurons by regulating the PI3K-AKT-FoxO signaling pathway in rats with Parkinson’s disease. Cell Physiol Biochem 49(3):971–984

    Article  CAS  PubMed  Google Scholar 

  79. Costantini C, Della-Bianca V, Formaggio E, Chiamulera C, Montresor A, Rossi F (2005) The expression of p75 neurotrophin receptor protects against the neurotoxicity of soluble oligomers of β-amyloid. Exp Cell Res 311(1):126–134

    Article  CAS  PubMed  Google Scholar 

  80. Wang W, Ma C, Mao Z, Li M (2004) JNK inhibition as a potential strategy in treating Parkinson’s disease. Drug News Perspect 17(10):646–654

    Article  CAS  PubMed  Google Scholar 

  81. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S et al (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci 101(2):665–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang S, Zhang C, Sheng X, Zhang X, Wang B, Zhang G (2014) Peripheral expression of MAPK pathways in Alzheimer’s and Parkinson’s diseases. J Clin Neurosci 21(5):810–814

    Article  CAS  PubMed  Google Scholar 

  83. Oliveira MA, Heimfarth L, Passos FRS, Miguel-dos-Santos R, Mingori MR, Moreira JCF et al (2020) Naringenin complexed with hydroxypropyl-β-cyclodextrin improves the sciatic nerve regeneration through inhibition of p75NTR and JNK pathway. Life Sci 241:117102

    Article  CAS  PubMed  Google Scholar 

  84. Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MB, Naoi M (2002) An anti-Parkinson’s disease drug, N-propargyl-1 (R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 326(2):105–108

    Article  CAS  PubMed  Google Scholar 

  85. Batiha GE, Al-Gareeb AI, Rotimi D, Adeyemi OS, Al-Kuraishy HM (2022) Common NLRP3 inflammasome inhibitors and COVID-19: divide and conquer. Scientific African e01407

  86. Hartmann A, Hunot S, Michel PP, Muriel M-P, Vyas S, Faucheux BA, et al. (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci 97(6):2875-2880

  87. Yamada M, Kida K, Amutuhaire W, Ichinose F, Kaneki M (2010) Gene disruption of caspase-3 prevents MPTP-induced Parkinson’s disease in mice. Biochem Biophys Res Commun 402(2):312–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166(1):29–43

    Article  CAS  PubMed  Google Scholar 

  89. Jellinger K (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    Article  CAS  PubMed  Google Scholar 

  90. Bradshaw JM, Nguyen L, Wallace W, Li C, Sauer J-M, Bard F et al (2012) Monitoring signaling by the p75NTR receptor utilizing a caspase-3 activation assay amenable to small-molecule screening. Assay Drug Dev Technol 10(4):353–364

    Article  CAS  PubMed  Google Scholar 

  91. Song W, Volosin M, Cragnolini AB, Hempstead BL, Friedman WJ (2010) ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons. J Neurosci 30(46):15608–15615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Imbriani P, Tassone A, Meringolo M, Ponterio G, Madeo G, Pisani A et al (2019) Loss of non-apoptotic role of caspase-3 in the PINK1 mouse model of Parkinson’s disease. Int J Mol Sci 20(14):3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sekar S, Taghibiglou C (2018) Elevated nuclear phosphatase and tensin homolog (PTEN) and altered insulin signaling in substantia nigral region of patients with Parkinson’s disease. Neurosci Lett 666:139–143

    Article  CAS  PubMed  Google Scholar 

  94. Yu H, Lin L, Zhang Z, Zhang H, Hu H (2020) Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 5(1):209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R (2021) NF-κB: at the borders of autoimmunity and inflammation. Front Immunol 12:716469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang T, Ma C, Zhang Z, Zhang H, Hu H (2021) NF-κB signaling in inflammation and cancer. MedComm 2(4):618–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S (2021) Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 54(1):4101–4123

    Article  CAS  Google Scholar 

  98. Bai Y, Li Q, Yang J, Zhou X, Yin X, Zhao D (2008) p75NTR activation of NF-κB is involved in PrP106-126-induced apoptosis in mouse neuroblastoma cells. Neurosci Res 62(1):9–14

    Article  CAS  PubMed  Google Scholar 

  99. Iyer M, Subramaniam MD, Venkatesan D, Cho S-G, Ryding M, Meyer M et al (2021) Role of RhoA-ROCK signaling in Parkinson’s disease. Eur J Pharmacol 894:173815

    Article  CAS  PubMed  Google Scholar 

  100. Wang Q, Song L-J, Ding Z-B, Chai Z, Yu J-Z, Xiao B-G et al (2022) Advantages of Rho-associated kinases and their inhibitor fasudil for the treatment of neurodegenerative diseases. Neural Regen Res 17(12):2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang B, Wang L, Nie Y, Wei W, Xiong W (2021) proBDNF expression induces apoptosis and inhibits synaptic regeneration by regulating the RhoA-JNK pathway in an in vitro post-stroke depression model. Transl Psychiatry 11(1):578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Miguez A, Garcia-Diaz Barriga G, Brito V, Straccia M, Giralt A, Ginés S et al (2015) Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 24(17):4958–4970

    Article  CAS  PubMed  Google Scholar 

  103. Nordvall G, Forsell P, Sandin J (2022) Neurotrophin-targeted therapeutics: a gateway to cognition and more? Drug Discov Today

  104. Conroy JN, Coulson EJ (2022) High-affinity TrkA and p75 neurotrophin receptor complexes: a twisted affair. J Biol Chem 298(3)

  105. Numakawa T, Odaka H (2022) The role of neurotrophin signaling in age-related cognitive decline and cognitive diseases. Int J Mol Sci 23(14):7726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zainullina L, Vakhitova YV, Lusta AY, Gudasheva T, Seredenin S (2021) Dimeric mimetic of BDNF loop 4 promotes survival of serum-deprived cell through TrkB-dependent apoptosis suppression. Sci Rep 11(1):7781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang F, Lin X, Liu A, Chen J, Shan Z, Teng W et al (2021) Maternal subclinical hypothyroidism in rats impairs spatial learning and memory in offspring by disrupting balance of the TrkA/p75NTR signal pathway. Mol Neurobiol 58(9):4237–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A (2022) A review of molecular interplay between neurotrophins and miRNAs in neuropsychological disorders. Mol Neurobiol 59(10):6260–6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khan N, Smith MT (2015) Neurotrophins and neuropathic pain: role in pathobiology. Molecules 20(6):10657–10688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang M, Xie Y, Qin D (2021) Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull 166:172–184

    Article  CAS  PubMed  Google Scholar 

  111. Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Rev 33(2–3):199–227

    Article  CAS  PubMed  Google Scholar 

  112. Daviaud N, Garbayo E, Sindji L, Martínez-Serrano A, Schiller PC, Montero-Menei CN (2015) Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson’s disease. Stem Cells Transl Med 4(6):670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Santos NAG, Martins NM, Sisti FM, Fernandes LS, Ferreira RS, Queiroz RHC et al (2015) The neuroprotection of cannabidiol against MPP+-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson’s disease. Toxicol in Vitro 30(1):231–240

    Article  CAS  PubMed  Google Scholar 

  114. Salahuddin P, Fatima MT, Uversky VN, Khan RH, Islam Z, Furkan M (2021) The role of amyloids in Alzheimer’s and Parkinson’s diseases. Int J Biol Macromol 1(190):44–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NHA, HMA-K, and AIA conceptualized the manuscript, wrote, edited, and reviewed the main text, and approved the final edition of the manuscript. SAA, HMS, and GE-SB prepared the figures, wrote, corrected, amended, and approved the final edition of the manuscript.

Corresponding author

Correspondence to Hebatallah M. Saad.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N.H., Al-kuraishy, H.M., Al-Gareeb, A.I. et al. The Molecular Pathway of p75 Neurotrophin Receptor (p75NTR) in Parkinson’s Disease: The Way of New Inroads. Mol Neurobiol 61, 2469–2480 (2024). https://doi.org/10.1007/s12035-023-03727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03727-8

Keywords

Navigation