Skip to main content

Advertisement

Log in

Pivotal Role of Fyn Kinase in Parkinson’s Disease and Levodopa-Induced Dyskinesia: a Novel Therapeutic Target?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The exact etiology of Parkinson’s disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer’s disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  PubMed  Google Scholar 

  2. Sanz-Blasco S, Bordone MP, Damianich A, Gomez G, Bernardi MA, Isaja L, Taravini IR, Hanger DP et al (2018) The kinase Fyn as a novel intermediate in L-DOPA-induced dyskinesia in Parkinson’s disease. Mol Neurobiol 55(6):5125–5136. https://doi.org/10.1007/s12035-017-0748-3

    Article  CAS  PubMed  Google Scholar 

  3. Angelopoulou E, Bozi M, Simitsi AM, Koros C, Antonelou R, Papagiannakis N, Maniati M, Poula D et al (2019) The relationship between environmental factors and different Parkinson's disease subtypes in Greece: data analysis of the Hellenic Biobank of Parkinson’s disease. Parkinsonism Relat Disord 67:105–112. https://doi.org/10.1016/j.parkreldis.2019.08.013

    Article  PubMed  Google Scholar 

  4. Ohnishi H, Murata Y, Okazawa H, Matozaki T (2011) Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci 34(12):629–637. https://doi.org/10.1016/j.tins.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  5. Tintori C, La Sala G, Vignaroli G, Botta L, Fallacara AL, Falchi F, Radi M, Zamperini C et al (2015) Studies on the ATP binding site of Fyn kinase for the identification of new inhibitors and their evaluation as potential agents against tauopathies and tumors. J Med Chem 58(11):4590–4609. https://doi.org/10.1021/acs.jmedchem.5b00140

    Article  CAS  PubMed  Google Scholar 

  6. Poli G, Lapillo M, Granchi C, Caciolla J, Mouawad N, Caligiuri I, Rizzolio F, Langer T et al (2018) Binding investigation and preliminary optimisation of the 3-amino-1,2,4-triazin-5(2H)-one core for the development of new Fyn inhibitors. J Enzyme Inhib Med Chem 33(1):956–961. https://doi.org/10.1080/14756366.2018.1469017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241(4861):42–52. https://doi.org/10.1126/science.3291115

    Article  CAS  PubMed  Google Scholar 

  8. Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R (2009) T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 228(1):9–22. https://doi.org/10.1111/j.1600-065X.2008.00745.x

    Article  CAS  PubMed  Google Scholar 

  9. Nygaard HB (2018) Targeting Fyn kinase in Alzheimer’s disease. Biol Psychiatry 83(4):369–376. https://doi.org/10.1016/j.biopsych.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura T, Yamashita H, Takahashi T, Nakamura S (2001) Activated Fyn phosphorylates alpha-synuclein at tyrosine residue 125. Biochem Biophys Res Commun 280(4):1085–1092. https://doi.org/10.1006/bbrc.2000.4253

    Article  CAS  PubMed  Google Scholar 

  11. Schenone S, Brullo C, Musumeci F, Biava M, Falchi F, Botta M (2011) Fyn kinase in brain diseases and cancer: the search for inhibitors. Curr Med Chem 18(19):2921–2942. https://doi.org/10.2174/092986711796150531

    Article  CAS  PubMed  Google Scholar 

  12. Lee G, Thangavel R, Sharma VM, Litersky JM, Bhaskar K, Fang SM, Do LH, Andreadis A et al (2004) Phosphorylation of tau by Fyn: implications for Alzheimer’s disease. J Neurosci 24(9):2304–2312. https://doi.org/10.1523/JNEUROSCI.4162-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, Robinson SA, Gunther EC et al (2015) Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol 77(6):953–971. https://doi.org/10.1002/ana.24394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saminathan H, Asaithambi A, Anantharam V, Kanthasamy AG, Kanthasamy A (2011) Environmental neurotoxic pesticide dieldrin activates a non receptor tyrosine kinase to promote PKCdelta-mediated dopaminergic apoptosis in a dopaminergic neuronal cell model. Neurotoxicology 32(5):567–577. https://doi.org/10.1016/j.neuro.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panicker N, Saminathan H, Jin H, Neal M, Harischandra DS, Gordon R, Kanthasamy K, Lawana V et al (2015) Fyn kinase regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson’s disease. J Neurosci 35(27):10058–10077. https://doi.org/10.1523/JNEUROSCI.0302-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pascoli V, Besnard A, Herve D, Pages C, Heck N, Girault JA, Caboche J, Vanhoutte P (2011) Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol Psychiatry 69(3):218–227. https://doi.org/10.1016/j.biopsych.2010.08.031

    Article  CAS  PubMed  Google Scholar 

  17. Tan Y, Xu Y, Cheng C, Zheng C, Zeng W, Wang J, Zhang X, Yang X et al (2020) LY354740 reduces extracellular glutamate concentration, inhibits phosphorylation of Fyn/NMDARs, and expression of PLK2/pS129 alpha-synuclein in mice treated with acute or sub-acute MPTP. Front Pharmacol 11:183. https://doi.org/10.3389/fphar.2020.00183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Angelopoulou E, Paudel YN, Piperi C (2019) miR-124 and Parkinson’s disease: a biomarker with therapeutic potential. Pharmacol Res 150:104515. https://doi.org/10.1016/j.phrs.2019.104515

    Article  CAS  PubMed  Google Scholar 

  19. Stefanis L (2012) Alpha-Synuclein in Parkinson’s disease. Cold Spring Harbor Perspect Med 2(2):a009399. https://doi.org/10.1101/cshperspect.a009399

    Article  CAS  Google Scholar 

  20. Kang SS, Zhang Z, Liu X, Manfredsson FP, He L, Iuvone PM, Cao X, Sun YE et al (2017) Alpha-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci U S A 114(5):1183–1188. https://doi.org/10.1073/pnas.1618627114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15(6):916–926. https://doi.org/10.1096/fj.00-0334com

    Article  CAS  PubMed  Google Scholar 

  22. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252. https://doi.org/10.1016/s0896-6273(00)80886-7

    Article  CAS  PubMed  Google Scholar 

  23. Phan JA, Stokholm K, Zareba-Paslawska J, Jakobsen S, Vang K, Gjedde A, Landau AM, Romero-Ramos M (2017) Early synaptic dysfunction induced by alpha-synuclein in a rat model of Parkinson’s disease. Sci Rep 7(1):6363. https://doi.org/10.1038/s41598-017-06724-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E et al (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. https://doi.org/10.1038/ncomms2534

    Article  CAS  PubMed  Google Scholar 

  25. Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, Nasstrom T, Franquelim HG et al (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32(34):11750–11762. https://doi.org/10.1523/JNEUROSCI.0234-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fayyad M, Erskine D, Majbour NK, Vaikath NN, Ghanem SS, Sudhakaran IP, Abdesselem H, Lamprokostopoulou A et al (2020) Investigating the presence of doubly phosphorylated alpha-synuclein at tyrosine 125 and serine 129 in idiopathic Lewy body diseases. Brain Pathol 30:831–843. https://doi.org/10.1111/bpa.12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen L, Periquet M, Wang X, Negro A, McLean PJ, Hyman BT, Feany MB (2009) Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest 119(11):3257–3265. https://doi.org/10.1172/JCI39088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kosten J, Binolfi A, Stuiver M, Verzini S, Theillet FX, Bekei B, van Rossum M, Selenko P (2014) Efficient modification of alpha-synuclein serine 129 by protein kinase CK1 requires phosphorylation of tyrosine 125 as a priming event. ACS Chem Neurosci 5(12):1203–1208. https://doi.org/10.1021/cn5002254

    Article  CAS  PubMed  Google Scholar 

  29. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ et al (2004) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 279(19):20451–20460. https://doi.org/10.1074/jbc.M311164200

    Article  CAS  PubMed  Google Scholar 

  31. Kaul S, Anantharam V, Yang Y, Choi CJ, Kanthasamy A, Kanthasamy AG (2005) Tyrosine phosphorylation regulates the proteolytic activation of protein kinase Cdelta in dopaminergic neuronal cells. J Biol Chem 280(31):28721–28730. https://doi.org/10.1074/jbc.M501092200

    Article  CAS  PubMed  Google Scholar 

  32. Weisova P, Davila D, Tuffy LP, Ward MW, Concannon CG, Prehn JH (2011) Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal 14(10):1863–1876. https://doi.org/10.1089/ars.2010.3544

    Article  CAS  PubMed  Google Scholar 

  33. Li Q, Niu C, Zhang X, Dong M (2018) Gastrodin and Isorhynchophylline synergistically inhibit MPP(+)-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3beta pathways: Involvement of Nrf2 nuclear translocation. ACS Chem Neurosci 9(3):482–493. https://doi.org/10.1021/acschemneuro.7b00247

    Article  CAS  PubMed  Google Scholar 

  34. Barcia C, Ros CM, Ros-Bernal F, Gomez A, Annese V, Carrillo-de Sauvage MA, Yuste JE, Campuzano CM et al (2013) Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. J Neuroimmunol 261(1–2):60–66. https://doi.org/10.1016/j.jneuroim.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  35. Javed H, Thangavel R, Selvakumar GP, Dubova I, Schwartz N, Ahmed ME, Zaheer S, Kempuraj D et al (2020) NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson’s disease. Int Immunopharmacol 83:106441. https://doi.org/10.1016/j.intimp.2020.106441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Chi J, Huang D, Ding L, Zhao X, Jiang L, Yu Y, Gao F (2020) Alpha-synuclein promotes progression of Parkinson’s disease by upregulating autophagy signaling pathway to activate NLRP3 inflammasome. Exp Ther Med 19(2):931–938. https://doi.org/10.3892/etm.2019.8297

    Article  CAS  PubMed  Google Scholar 

  37. Robinson S, Freeman P, Moore C, Touchon JC, Krentz L, Meshul CK (2003) Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function. Exp Neurol 180(1):74–87. https://doi.org/10.1016/s0014-4886(02)00050-x

    Article  PubMed  Google Scholar 

  38. Kong M, Ba M, Liu C, Zhang Y, Zhang H, Qiu H (2015) NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model. Behav Brain Res 282:46–53. https://doi.org/10.1016/j.bbr.2014.12.059

    Article  CAS  PubMed  Google Scholar 

  39. Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG (2004) Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65(1):121–129. https://doi.org/10.1124/mol.65.1.121

    Article  CAS  PubMed  Google Scholar 

  40. Johnson KA, Niswender CM, Conn PJ, Xiang Z (2011) Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata. Neurosci Lett 504(2):102–106. https://doi.org/10.1016/j.neulet.2011.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ellis CE, Schwartzberg PL, Grider TL, Fink DW, Nussbaum RL (2001) Alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J Biol Chem 276(6):3879–3884. https://doi.org/10.1074/jbc.M010316200

    Article  CAS  PubMed  Google Scholar 

  42. Kang SS, Zhang Z, Liu X, Manfredsson FP, Benskey MJ, Cao X, Xu J, Sun YE et al (2017) TrkB neurotrophic activities are blocked by alpha-synuclein, triggering dopaminergic cell death in Parkinson's disease. Proc Natl Acad Sci U S A 114(40):10773–10778. https://doi.org/10.1073/pnas.1713969114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferreira DG, Temido-Ferreira M, Vicente Miranda H, Batalha VL, Coelho JE, Szego EM, Marques-Morgado I, Vaz SH et al (2017) Alpha-synuclein interacts with PrP(C) to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 20(11):1569–1579. https://doi.org/10.1038/nn.4648

    Article  CAS  PubMed  Google Scholar 

  44. Sarkar S, Dammer EB, Malovic E, Olsen AL, Raza SA, Gao T, Xiao H, Oliver DL et al (2020) Molecular signatures of neuroinflammation induced by alphaSynuclein aggregates in microglial cells. Front Immunol 11:33. https://doi.org/10.3389/fimmu.2020.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Panicker N, Sarkar S, Harischandra DS, Neal M, Kam TI, Jin H, Saminathan H, Langley M et al (2019) Fyn kinase regulates misfolded alpha-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med 216(6):1411–1430. https://doi.org/10.1084/jem.20182191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hagg T (1998) Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp Neurol 149(1):183–192. https://doi.org/10.1006/exnr.1997.6684

    Article  CAS  PubMed  Google Scholar 

  47. Pereira DB, Chao MV (2007) The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts. J Neurosci 27(18):4859–4869. https://doi.org/10.1523/JNEUROSCI.4587-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999) Alpha-synuclein binds to tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274(36):25481–25489. https://doi.org/10.1074/jbc.274.36.25481

    Article  CAS  PubMed  Google Scholar 

  49. Arima K, Hirai S, Sunohara N, Aoto K, Izumiyama Y, Ueda K, Ikeda K, Kawai M (1999) Cellular co-localization of phosphorylated tau- and NACP/alpha-synuclein-epitopes in lewy bodies in sporadic Parkinson's disease and in dementia with Lewy bodies. Brain Res 843(1–2):53–61. https://doi.org/10.1016/s0006-8993(99)01848-x

    Article  CAS  PubMed  Google Scholar 

  50. Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with Src-family non-receptor tyrosine kinases. J Cell Sci 111(Pt 21):3167–3177

    CAS  PubMed  Google Scholar 

  51. Nakamura T, Yamashita H, Nagano Y, Takahashi T, Avraham S, Avraham H, Matsumoto M, Nakamura S (2002) Activation of Pyk2/RAFTK induces tyrosine phosphorylation of alpha-synuclein via Src-family kinases. FEBS Lett 521(1–3):190–194. https://doi.org/10.1016/s0014-5793(02)02861-2

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi T, Yamashita H, Nagano Y, Nakamura T, Ohmori H, Avraham H, Avraham S, Yasuda M et al (2003) Identification and characterization of a novel Pyk2/related adhesion focal tyrosine kinase-associated protein that inhibits alpha-synuclein phosphorylation. J Biol Chem 278(43):42225–42233. https://doi.org/10.1074/jbc.M213217200

    Article  CAS  PubMed  Google Scholar 

  53. Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC et al (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15(9):1227–1235. https://doi.org/10.1038/nn.3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Um JW, Strittmatter SM (2013) Amyloid-beta induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 7(1):37–41. https://doi.org/10.4161/pri.22212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blandini F, Armentero MT (2012) New pharmacological avenues for the treatment of L-DOPA-induced dyskinesias in Parkinson’s disease: targeting glutamate and adenosine receptors. Expert Opin Investig Drugs 21(2):153–168. https://doi.org/10.1517/13543784.2012.651457

    Article  CAS  PubMed  Google Scholar 

  56. Bras IC, Lopes LV, Outeiro TF (2018) Sensing alpha-Synuclein from the outside via the prion protein: implications for neurodegeneration. Mov Disord: Official Journal of the Movement Disorder Society 33(11):1675–1684. https://doi.org/10.1002/mds.27478

    Article  Google Scholar 

  57. Crosby D, Poole AW (2003) Physical and functional interaction between protein kinase C delta and Fyn tyrosine kinase in human platelets. J Biol Chem 278(27):24533–24541. https://doi.org/10.1074/jbc.M301847200

    Article  CAS  PubMed  Google Scholar 

  58. Yamada E, Bastie CC (2014) Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase. PLoS One 9(2):e89604. https://doi.org/10.1371/journal.pone.0089604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang M, Deng YN, Zhang JY, Liu J, Li YB, Su H, Qu QM (2018) SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis 9(2):273–286. https://doi.org/10.14336/AD.2017.0517

    Article  PubMed  PubMed Central  Google Scholar 

  60. Herrera-Marschitz M, Arbuthnott G, Ungerstedt U (2010) The rotational model and microdialysis: significance for dopamine signalling, clinical studies, and beyond. Prog Neurobiol 90(2):176–189. https://doi.org/10.1016/j.pneurobio.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  61. Alvarez-Fischer D, Henze C, Strenzke C, Westrich J, Ferger B, Hoglinger GU, Oertel WH, Hartmann A (2008) Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and alpha-synuclein-deleted mice. Exp Neurol 210(1):182–193. https://doi.org/10.1016/j.expneurol.2007.10.012

    Article  CAS  PubMed  Google Scholar 

  62. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. https://doi.org/10.1038/nri2725

    Article  CAS  PubMed  Google Scholar 

  63. Binolfi A, Limatola A, Verzini S, Kosten J, Theillet FX, Rose HM, Bekei B, Stuiver M et al (2016) Intracellular repair of oxidation-damaged alpha-synuclein fails to target C-terminal modification sites. Nat Commun 7:10251. https://doi.org/10.1038/ncomms10251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leong SL, Pham CL, Galatis D, Fodero-Tavoletti MT, Perez K, Hill AF, Masters CL, Ali FE et al (2009) Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic Biol Med 46(10):1328–1337. https://doi.org/10.1016/j.freeradbiomed.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  65. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44. https://doi.org/10.1016/j.freeradbiomed.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  66. Jain AK, Jaiswal AK (2007) GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282(22):16502–16510. https://doi.org/10.1074/jbc.M611336200

    Article  CAS  PubMed  Google Scholar 

  67. Hatcher JM, Richardson JR, Guillot TS, McCormack AL, Di Monte DA, Jones DP, Pennell KD, Miller GW (2007) Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol 204(2):619–630. https://doi.org/10.1016/j.expneurol.2006.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P et al (2011) Caspase signalling controls microglia activation and neurotoxicity. Nature 472(7343):319–324. https://doi.org/10.1038/nature09788

    Article  CAS  PubMed  Google Scholar 

  69. Anantharam V, Kitazawa M, Wagner J, Kaul S, Kanthasamy AG (2002) Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J Neurosci 22(5):1738–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG (2003) Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur J Neurosci 18(6):1387–1401. https://doi.org/10.1046/j.1460-9568.2003.02864.x

    Article  PubMed  Google Scholar 

  71. Latchoumycandane C, Anantharam V, Jin H, Kanthasamy A, Kanthasamy A (2011) Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCdelta in cell culture and animal models of Parkinson's disease. Toxicol Appl Pharmacol 256(3):314–323. https://doi.org/10.1016/j.taap.2011.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yao HH, Ding JH, Zhou F, Wang F, Hu LF, Sun T, Hu G (2005) Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J Neurochem 92(4):948–961. https://doi.org/10.1111/j.1471-4159.2004.02937.x

    Article  CAS  PubMed  Google Scholar 

  73. Wei L, Chen C, Ding L, Mo M, Zou J, Lu Z, Li H, Wu H et al (2019) Wnt1 promotes EAAT2 expression and mediates the protective effects of astrocytes on dopaminergic cells in Parkinson’s disease. Neural Plasticity 2019:1247276–1247212. https://doi.org/10.1155/2019/1247276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nash JE, Johnston TH, Collingridge GL, Garner CC, Brotchie JM (2005) Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson's disease and L-DOPA-induced dyskinesia. FASEB J 19(6):583–585. https://doi.org/10.1096/fj.04-1854fje

    Article  CAS  PubMed  Google Scholar 

  75. Ba M, Kong M, Ma G (2015) Postsynaptic density protein 95-regulated NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in levodopa-induced dyskinesia rat models. Drug Des Devel Ther 9:199–206. https://doi.org/10.2147/DDDT.S75495

    Article  CAS  PubMed  Google Scholar 

  76. Oh JD, Russell DS, Vaughan CL, Chase TN (1998) Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res 813(1):150–159. https://doi.org/10.1016/s0006-8993(98)01049-x

    Article  CAS  PubMed  Google Scholar 

  77. Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21(15):5546–5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T et al (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276(1):693–699. https://doi.org/10.1074/jbc.M008085200

    Article  CAS  PubMed  Google Scholar 

  79. Hattori K, Uchino S, Isosaka T, Maekawa M, Iyo M, Sato T, Kohsaka S, Yagi T et al (2006) Fyn is required for haloperidol-induced catalepsy in mice. J Biol Chem 281(11):7129–7135. https://doi.org/10.1074/jbc.M511608200

    Article  CAS  PubMed  Google Scholar 

  80. Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T (1999) PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci U S A 96(2):435–440. https://doi.org/10.1073/pnas.96.2.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A et al (2012) PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest 122(11):3977–3989. https://doi.org/10.1172/JCI59426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C et al (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168. https://doi.org/10.1016/j.pneurobio.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  83. Bido S, Marti M, Morari M (2011) Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels. J Neurochem 118(6):1043–1055. https://doi.org/10.1111/j.1471-4159.2011.07376.x

    Article  CAS  PubMed  Google Scholar 

  84. Mao LM, Wang JQ (2015) Dopaminergic and cholinergic regulation of Fyn tyrosine kinase phosphorylation in the rat striatum in vivo. Neuropharmacology 99:491–499. https://doi.org/10.1016/j.neuropharm.2015.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim SA, Kang UJ, McGehee DS (2014) Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 6:22. https://doi.org/10.3389/fnsyn.2014.00022

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sayin S, Cakmur R, Yener GG, Yaka E, Ugurel B, Uzunel F (2014) Low-frequency repetitive transcranial magnetic stimulation for dyskinesia and motor performance in Parkinson’s disease. J Clin Neurosci 21(8):1373–1376. https://doi.org/10.1016/j.jocn.2013.11.025

    Article  PubMed  Google Scholar 

  87. Ba M, Kong M, Guan L, Yi M, Zhang H (2016) Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model. Oncotarget 7(37):58802–58812. https://doi.org/10.18632/oncotarget.11587

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ferrario JE, Rojas-Mayorquin AE, Saldana-Ortega M, Salum C, Gomes MZ, Hunot S, Raisman-Vozari R (2008) Pleiotrophin receptor RPTP-zeta/beta expression is up-regulated by L-DOPA in striatal medium spiny neurons of parkinsonian rats. J Neurochem 107(2):443–452. https://doi.org/10.1111/j.1471-4159.2008.05640.x

    Article  CAS  PubMed  Google Scholar 

  89. Herradon G, Ezquerra L (2009) Blocking receptor protein tyrosine phosphatase beta/zeta: a potential therapeutic strategy for Parkinson’s disease. Curr Med Chem 16(25):3322–3329. https://doi.org/10.2174/092986709788803240

    Article  CAS  PubMed  Google Scholar 

  90. Pariser H, Ezquerra L, Herradon G, Perez-Pinera P, Deuel TF (2005) Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin. Biochem Biophys Res Commun 332(3):664–669. https://doi.org/10.1016/j.bbrc.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  91. Gomez G, Saborido MD, Bernardi MA, Gershanik OS, Taravini IR, Ferrario JE (2018) Regulation of pleiotrophin and Fyn in the striatum of rats undergoing L-DOPA-induced dyskinesia. Neurosci Lett 666:5–10. https://doi.org/10.1016/j.neulet.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  92. Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS et al (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and parkinsonism. Mov Disord: Official Journal of the Movement Disorder Society 23(13):1860–1866. https://doi.org/10.1002/mds.22169

    Article  Google Scholar 

  93. Wang XS, Zhang ZR, Zhang XR, Chen SY, Shao B, Xie CL (2018) Modulation of CaMKIIa-GluN2B interaction in levodopa-induced dyskinesia in 6-OHDA-lesioned Parkinson's rats. Biomed Pharmacother 107:769–776. https://doi.org/10.1016/j.biopha.2018.08.062

    Article  CAS  PubMed  Google Scholar 

  94. Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z (2006) Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa-treated rats. Neurochem Res 31(11):1337–1347. https://doi.org/10.1007/s11064-006-9177-9

    Article  CAS  PubMed  Google Scholar 

  95. Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, Yusuf N, Starr NJ et al (2019) Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol 77:309–317. https://doi.org/10.1001/jamaneurol.2019.4200

    Article  PubMed Central  Google Scholar 

  96. Espay AJ, Hauser RA, Armstrong MJ (2019) The narrowing path for nilotinib and other potential disease-modifying therapies for Parkinson disease. JAMA Neurol 77:295. https://doi.org/10.1001/jamaneurol.2019.3983

    Article  Google Scholar 

  97. Panicker N, Kanthasamy A, Kanthasamy AG (2019) Fyn amplifies NLRP3 inflammasome signaling in Parkinson’s disease. Aging (Albany NY) 11(16):5871–5873. https://doi.org/10.18632/aging.102210

    Article  CAS  Google Scholar 

  98. Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, Kaufman AC, Rosenberg BJ et al (2015) A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther 7(1):35. https://doi.org/10.1186/s13195-015-0119-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Dyck CH, Nygaard HB, Chen K, Donohue MC, Raman R, Rissman RA, Brewer JB, Koeppe RA et al (2019) Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease: a randomized clinical trial. JAMA Neurol 76:1219. https://doi.org/10.1001/jamaneurol.2019.2050

    Article  PubMed Central  PubMed  Google Scholar 

  100. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408(3):297–315. https://doi.org/10.1042/BJ20070797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang D, Anantharam V, Kanthasamy A, Kanthasamy AG (2007) Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson’s disease. J Pharmacol Exp Ther 322(3):913–922. https://doi.org/10.1124/jpet.107.124669

    Article  CAS  PubMed  Google Scholar 

  102. Yang X, Wu N, Song L, Liu Z (2013) Intrastriatal injections of KN-93 ameliorates levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Neuropsychiatr Dis Treat 9:1213–1220. https://doi.org/10.2147/NDT.S45422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bach A, Clausen BH, Kristensen LK, Andersen MG, Ellman DG, Hansen PBL, Hasseldam H, Heitz M et al (2019) Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor. Neuropharmacology 150:100–111. https://doi.org/10.1016/j.neuropharm.2019.02.035

    Article  CAS  PubMed  Google Scholar 

  104. Geloen A, Helin L, Geeraert B, Malaud E, Holvoet P, Marguerie G (2012) CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One 7(5):e37633. https://doi.org/10.1371/journal.pone.0037633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tison F, Keywood C, Wakefield M, Durif F, Corvol JC, Eggert K, Lew M, Isaacson S et al (2016) A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord: Official Journal of the Movement Disorder Society 31(9):1373–1380. https://doi.org/10.1002/mds.26659

    Article  CAS  Google Scholar 

  106. Lewitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM, Group USS (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 63(3):295–302. https://doi.org/10.1002/ana.21315

    Article  CAS  PubMed  Google Scholar 

  107. Dunayevich E, Erickson J, Levine L, Landbloom R, Schoepp DD, Tollefson GD (2008) Efficacy and tolerability of an mGlu2/3 agonist in the treatment of generalized anxiety disorder. Neuropsychopharmacology 33(7):1603–1610. https://doi.org/10.1038/sj.npp.1301531

    Article  CAS  PubMed  Google Scholar 

  108. Reddy KB, Smith DM, Plow EF (2008) Analysis of Fyn function in hemostasis and alphaIIbbeta3-integrin signaling. J Cell Sci 121(Pt 10):1641–1648. https://doi.org/10.1242/jcs.014076

    Article  CAS  PubMed  Google Scholar 

  109. Hannon RA, Clack G, Rimmer M, Swaisland A, Lockton JA, Finkelman RD, Eastell R (2010) Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: A randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial. J Bone Miner Res 25(3):463–471. https://doi.org/10.1359/jbmr.090830

    Article  CAS  PubMed  Google Scholar 

  110. Kreutzman A, Ladell K, Koechel C, Gostick E, Ekblom M, Stenke L, Melo T, Einsele H et al (2011) Expansion of highly differentiated CD8+ T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation. Leukemia 25(10):1587–1597. https://doi.org/10.1038/leu.2011.135

    Article  CAS  PubMed  Google Scholar 

  111. Angelopoulou E, Paudel YN, Shaikh MF, Piperi C (2020) Fractalkine (CX3CL1) signaling and neuroinflammation in Parkinson’s disease: potential clinical and therapeutic implications. Pharmacol Res 158:104930. https://doi.org/10.1016/j.phrs.2020.104930

    Article  CAS  PubMed  Google Scholar 

  112. Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178(7):1295–1307. https://doi.org/10.1083/jcb.200610139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Choi I, Kim B, Byun JW, Baik SH, Huh YH, Kim JH, Mook-Jung I, Song WK et al (2015) LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase. Nat Commun 6:8255. https://doi.org/10.1038/ncomms9255

    Article  CAS  PubMed  Google Scholar 

  114. He F, Qi G, Zhang Q, Cai H, Li T, Li M, Zhang Q, Chen J et al (2020) Quantitative Phosphoproteomic analysis in alpha-Synuclein transgenic mice reveals the involvement of aberrant p25/Cdk5 signaling in early-stage Parkinson’s disease. Cell Mol Neurobiol 40:897–909. https://doi.org/10.1007/s10571-019-00780-7

    Article  CAS  PubMed  Google Scholar 

  115. Bobinger T, May L, Lucking H, Kloska SP, Burkardt P, Spitzer P, Maler JM, Corbeil D et al (2017) CD133-positive membrane particles in cerebrospinal fluid of patients with inflammatory and degenerative neurological diseases. Front Cell Neurosci 11:77. https://doi.org/10.3389/fncel.2017.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem 278(11):9630–9638. https://doi.org/10.1074/jbc.M209141200

    Article  CAS  PubMed  Google Scholar 

  117. Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D (2002) NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci U S A 99(8):5710–5715. https://doi.org/10.1073/pnas.062046299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma J, Wu R, Zhang Q, Wu JB, Lou J, Zheng Z, Ding JQ, Yuan Z (2014) DJ-1 interacts with RACK1 and protects neurons from oxidative-stress-induced apoptosis. Biochem J 462(3):489–497. https://doi.org/10.1042/BJ20140235

    Article  CAS  PubMed  Google Scholar 

  119. Mao LM, Wang JQ (2016) Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo. J Neurosci Res 94(4):329–338. https://doi.org/10.1002/jnr.23713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang WW, Zhang XR, Zhang ZR, Wang XS, Chen J, Chen SY, Xie CL (2018) Effects of mGluR5 antagonists on Parkinson's patients with L-dopa-induced dyskinesia: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci 10:262. https://doi.org/10.3389/fnagi.2018.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kurup PK, Xu J, Videira RA, Ononenyi C, Baltazar G, Lombroso PJ, Nairn AC (2015) STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease. Proc Natl Acad Sci U S A 112(4):1202–1207. https://doi.org/10.1073/pnas.1417423112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lombroso PJ, Ogren M, Kurup P, Nairn AC (2016) Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity. F1000 Research 5:F1000 Faculty Rev-2932. https://doi.org/10.12688/f1000research.8571.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oh JD, Del Dotto P, Chase TN (1997) Protein kinase A inhibitor attenuates levodopa-induced motor response alterations in the hemi-parkinsonian rat. Neurosci Lett 228(1):5–8. https://doi.org/10.1016/s0304-3940(97)00355-8

    Article  CAS  PubMed  Google Scholar 

  124. Ding W, Lin H, Hong X, Ji D, Wu F (2020) Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson’s disease. Toxicology 436:152437. https://doi.org/10.1016/j.tox.2020.152437

    Article  CAS  PubMed  Google Scholar 

  125. Gunnarsson LG, Bodin L (2019) Occupational exposures and neurodegenerative diseases-a systematic literature review and meta-analyses. Int J Environ Res Public Health 16(3). https://doi.org/10.3390/ijerph16030337

  126. Shao Y, Figeys D, Ning Z, Mailloux R, Chan HM (2015) Methylmercury can induce Parkinson’s-like neurotoxicity similar to 1-methyl-4-phenylpyridinium: a genomic and proteomic analysis on MN9D dopaminergic neuron cells. J Toxicol Sci 40(6):817–828. https://doi.org/10.2131/jts.40.817

    Article  CAS  PubMed  Google Scholar 

  127. Kang NJ, Lee KW, Shin BJ, Jung SK, Hwang MK, Bode AM, Heo YS, Lee HJ et al (2009) Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 30(2):321–330. https://doi.org/10.1093/carcin/bgn282

    Article  CAS  PubMed  Google Scholar 

  128. Jacobson KA, Gao ZG, Matricon P, Eddy MT, Carlsson J (2020) A2A adenosine receptor antagonists: from caffeine to selective non-xanthines. Br J Pharmacol. https://doi.org/10.1111/bph.15103

  129. Zhang H, Liu H, Borok Z, Davies KJ, Ursini F, Forman HJ (2012) Cigarette smoke extract stimulates epithelial-mesenchymal transition through Src activation. Free Radic Biol Med 52(8):1437–1442. https://doi.org/10.1016/j.freeradbiomed.2012.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, Tan M, Kia DA et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18(12):1091–1102. https://doi.org/10.1016/S1474-4422(19)30320-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ghosh MC, Mondal AC, Basu S, Banerjee S, Majumder J, Bhattacharya D, Dasgupta PS (2003) Dopamine inhibits cytokine release and expression of tyrosine kinases, Lck and Fyn in activated T cells. Int Immunopharmacol 3(7):1019–1026. https://doi.org/10.1016/S1567-5769(03)00100-0

    Article  CAS  PubMed  Google Scholar 

  132. Chen Z, Chen S, Liu J (2018) The role of T cells in the pathogenesis of Parkinson’s disease. Prog Neurobiol 169:1–23. https://doi.org/10.1016/j.pneurobio.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  133. Bekris LM, Millard S, Lutz F, Li G, Galasko DR, Farlow MR, Quinn JF, Kaye JA et al (2012) Tau phosphorylation pathway genes and cerebrospinal fluid tau levels in Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 159B(7):874–883. https://doi.org/10.1002/ajmg.b.32094

    Article  CAS  PubMed  Google Scholar 

  134. Katayama T, Sawada J, Takahashi K, Yahara O (2020) Cerebrospinal fluid biomarkers in Parkinson's disease: a critical overview of the literature and meta-analyses. Brain Sciences 10(7):466. https://doi.org/10.3390/brainsci10070466

    Article  CAS  PubMed Central  Google Scholar 

  135. Sardi SP, Simuni T (2019) New era in disease modification in Parkinson’s disease: review of genetically targeted therapeutics. Parkinsonism Relat Disord 59:32–38. https://doi.org/10.1016/j.parkreldis.2018.10.025

    Article  PubMed  Google Scholar 

Download references

Funding

YNP would like to acknowledge Monash University Malaysia for supporting with HDR Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

EA carried out the literature review, conceptualized, and prepared the initial draft. YNP and TJ edited and contributed to the final manuscript. CP provided critical inputs, edited, and contributed to the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christina Piperi.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelopoulou, E., Paudel, Y.N., Julian, T. et al. Pivotal Role of Fyn Kinase in Parkinson’s Disease and Levodopa-Induced Dyskinesia: a Novel Therapeutic Target?. Mol Neurobiol 58, 1372–1391 (2021). https://doi.org/10.1007/s12035-020-02201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02201-z

Keywords

Navigation