Skip to main content

Advertisement

Log in

The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Cofano F, Boido M, Monticelli M et al (2019) Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci 20(11):2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang H, Liu X, Zhao Y et al (2016) Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years: an observational study. Medicine 95(43):e5220

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen J, Chen Z, Zhang K et al (2021) Epidemiological features of traumatic spinal cord injury in Guangdong Province, China. J Spinal Cord Med 44(2):276–281

    Article  PubMed  Google Scholar 

  4. O'shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Invest 127(9):3259–3270

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alonso-Calviño E, Martínez-Camero I, Fernández-López E et al (2016) Increased responses in the somatosensory thalamus immediately after spinal cord injury. Neurobiol Dis 87:39–49

    Article  PubMed  Google Scholar 

  6. Lukovic D, Stojkovic M, Moreno-Manzano V et al (2015) Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem cells (Dayton, Ohio) 33(4):1036–1041

    Article  PubMed  Google Scholar 

  7. Kim YH, Ha KY, Kim SI (2017) Spinal cord injury and related clinical trials. Clin Orthop Surg 9(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kwon BK, Tetzlaff W, Grauer JN et al (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464

    Article  PubMed  Google Scholar 

  9. Liu X, Zhang Y, Wang Y et al (2021) Inflammatory response to spinal cord injury and its treatment. World Neurosurg 155:19–31

    Article  PubMed  Google Scholar 

  10. Pozniak PD, Darbinyan A, Khalili K (2016) TNF-α/TNFR2 regulatory axis stimulates EphB2-mediated neuroregeneration via activation of NF-κB. J Cell Physiol 231(6):1237–1248

    Article  CAS  PubMed  Google Scholar 

  11. Haenold R, Weih F, Herrmann KH et al (2014) NF-κB controls axonal regeneration and degeneration through cell-specific balance of RelA and p50 in the adult CNS. J Cell Sci 127(Pt 14):3052–3065

    CAS  PubMed  Google Scholar 

  12. Hayden MS, West AP, Ghosh S (2006) SnapShot: NF-kappaB signaling pathways. Cell 127(6):1286–1287

    Article  PubMed  Google Scholar 

  13. Liu H, Zhang J, Xu X et al (2021) SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-κB signaling. Theranostics 11(9):4187–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan R, Zhang Y, Botchway BOA et al (2021) Resveratrol can attenuate astrocyte activation to treat spinal cord injury by inhibiting inflammatory responses. Mol Neurobiol 58(11):5799–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liao HY, Ran R, Da CM et al (2022) Ski regulates the inflammatory response of reactive astrocytes induced by oxygen glucose deprivation/reoxygenation (OGD/R) through the NF-κB pathway. Neuroscience 490:250–263

    Article  CAS  PubMed  Google Scholar 

  16. Guan B, Jiang C (2021) Design and development of 1,3,5-triazine derivatives as protective agent against spinal cord injury in rat via inhibition of NF-ĸB. Bioorg Med Chem Lett 41:127964

    Article  CAS  PubMed  Google Scholar 

  17. Fan L, Dong J, He X et al (2021) Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Hum Exp Toxicol 40(10):1612–1623

    Article  CAS  PubMed  Google Scholar 

  18. Glaser J, Gonzalez R, Perreau VM et al (2004) Neutralization of the chemokine CXCL10 enhances tissue sparing and angiogenesis following spinal cord injury. J Neurosci Res 77(5):701–708

    Article  CAS  PubMed  Google Scholar 

  19. Garcia E, Aguilar-Cevallos J, Silva-Garcia R et al (2016) Cytokine and growth factor activation in vivo and in vitro after spinal cord injury. Mediators Inflamm 2016:9476020

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tei R, Kaido T, Nakase H et al (2008) Protective effect of C1 esterase inhibitor on acute traumatic spinal cord injury in the rat. Neurol Res 30(7):761–767

    Article  CAS  PubMed  Google Scholar 

  21. Beck KD, Nguyen HX, Galvan MD et al (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133(Pt 2):433–447

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ren Y, Stuart L, Lindberg FP et al (2001) Nonphlogistic clearance of late apoptotic neutrophils by macrophages: efficient phagocytosis independent of beta 2 integrins. J Immunol 166(7):4743–4750

    Article  CAS  PubMed  Google Scholar 

  23. Kigerl KA, Mcgaughy VM, Popovich PG (2006) Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol 494(4):578–594

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cătălin B, Mitran S, Albu C et al (2013) Comparative aspects of microglia reaction in white and gray matter. Curr Health Sci J 39(3):151–154

    PubMed  PubMed Central  Google Scholar 

  25. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399

    Article  CAS  PubMed  Google Scholar 

  26. Perrin FE, Lacroix S, Avilés-Trigueros M et al (2005) Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128(Pt 4):854–866

    Article  PubMed  Google Scholar 

  27. Shechter R, London A, Varol C et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113

    Article  PubMed  PubMed Central  Google Scholar 

  28. Neirinckx V, Coste C, Franzen R et al (2014) Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 11:150

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paixão S, Klein R (2010) Neuron-astrocyte communication and synaptic plasticity. Curr Opin Neurobiol 20(4):466–473

    Article  PubMed  Google Scholar 

  30. Funk LH, Hackett AR, Bunge MB et al (2016) Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation 13(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Chen J, Jin H et al (2019) BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats. J Cell Mol Med 23(5):3214–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson CD, Zurko JC, Hanna BF et al (2013) The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 30(15):1311–1324

    Article  PubMed  Google Scholar 

  33. Mccormick SM, Heller NM (2015) Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 75(1):38–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Junttila IS (2018) Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol 9:888

    Article  PubMed  PubMed Central  Google Scholar 

  35. King E, O'brien JT, Donaghy P et al (2018) Peripheral inflammation in prodromal Alzheimer's and Lewy body dementias. J Neurol Neurosurg Psychiatry 89(4):339–345

    Article  PubMed  Google Scholar 

  36. Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15(3):541–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jridi I, Canté-Barrett K, Pike-Overzet K et al (2020) Inflammation and Wnt signaling: target for immunomodulatory therapy? Front Cell Dev Biol 8:615131

    Article  PubMed  Google Scholar 

  39. García E, Mondragón-Caso J, Ibarra A (2016) Spinal cord injury: potential neuroprotective therapy based on neural-derived peptides. Neural Regen Res 11(11):1762–1763

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mortazavi MM, Verma K, Harmon OA et al (2015) The microanatomy of spinal cord injury: a review. Clin Anat (New York, NY) 28(1):27–36

    Article  Google Scholar 

  41. Cekanaviciute E, Buckwalter MS (2016) Astrocytes: integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics 13(4):685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hsu LC, Enzler T, Seita J et al (2011) IL-1β-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKβ. Nat Immunol 12(2):144–150

    Article  CAS  PubMed  Google Scholar 

  43. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11

    Article  CAS  PubMed  Google Scholar 

  44. Taoka Y, Okajima K, Uchiba M et al (1997) Role of neutrophils in spinal cord injury in the rat. Neuroscience 79(4):1177–1182

    Article  CAS  PubMed  Google Scholar 

  45. Filipp ME, Travis BJ, Henry SS et al (2019) Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 14(1):7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500(2):267–285

    Article  CAS  PubMed  Google Scholar 

  47. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  48. Hines DJ, Hines RM, Mulligan SJ et al (2009) Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia 57(15):1610–1618

    Article  PubMed  Google Scholar 

  49. Popovich PG, Guan Z, Mcgaughy V et al (2002) The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 61(7):623–633

    Article  CAS  PubMed  Google Scholar 

  50. Sroga JM, Jones TB, Kigerl KA et al (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462(2):223–240

    Article  PubMed  Google Scholar 

  51. Fleming JC, Norenberg MD, Ramsay DA et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(Pt 12):3249–3269

    Article  PubMed  Google Scholar 

  52. Probert L, Eugster HP, Akassoglou K et al (2000) TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 123(Pt 10):2005–2019

    Article  PubMed  Google Scholar 

  53. Bradbury EJ, Burnside ER (2019) Moving beyond the glial scar for spinal cord repair. Nat Commun 10(1):3879

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pineau I, Sun L, Bastien D et al (2010) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 24(4):540–553

    Article  CAS  PubMed  Google Scholar 

  55. Haroon F, Drögemüller K, Händel U et al (2011) Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J Immunol 186(11):6521–6531

    Article  CAS  PubMed  Google Scholar 

  56. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620

    Article  CAS  PubMed  Google Scholar 

  57. Okada S, Hara M, Kobayakawa K et al (2018) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39–43

    Article  PubMed  Google Scholar 

  58. Adams KL, Gallo V (2018) The diversity and disparity of the glial scar. Nat Neurosci 21(1):9–15

    Article  CAS  PubMed  Google Scholar 

  59. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389

    Article  CAS  PubMed  Google Scholar 

  60. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388

    Article  CAS  PubMed  Google Scholar 

  61. Herz J, Filiano AJ, Smith A et al (2017) Myeloid cells in the central nervous system. Immunity 46(6):943–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34(18):6316–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prüss H, Kopp MA, Brommer B et al (2011) Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathol 21(6):652–660

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lech M, Anders HJ (2013) Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochimica et biophysica acta 1832(7):989–997

    Article  CAS  PubMed  Google Scholar 

  65. Zhou X, He X, Ren Y (2014) Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res 9(20):1787–1795

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu X, Wen S, Yan F et al (2018) Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J Neuroinflammation 15(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tran AP, Warren PM, Silver J (2020) Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 328:113276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Janzadeh A, Sarveazad A, Hamblin MR et al (2020) The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiol Behav 227:113141

    Article  CAS  PubMed  Google Scholar 

  69. Lang BT, Cregg JM, Depaul MA et al (2015) Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 518(7539):404–408

    Article  CAS  PubMed  Google Scholar 

  70. Martinez FO, Gordon S, Locati M et al (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311

    Article  CAS  PubMed  Google Scholar 

  71. Lukacova N, Kisucka A, Kiss Bimbova K et al (2021) Glial-neuronal interactions in pathogenesis and treatment of spinal cord injury. Int J Mol Sci 22(24)

  72. Sindrilaru A, Scharffetter-Kochanek K (2013) Disclosure of the culprits: macrophages-versatile regulators of wound healing. Adv Wound Care (New Rochelle) 2(7):357–368

    Article  PubMed  Google Scholar 

  73. Novak ML, Koh TJ (2013) Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol 183(5):1352–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Novak ML, Koh TJ (2013) Macrophage phenotypes during tissue repair. J Leukoc Biol 93(6):875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Edwards JP, Zhang X, Frauwirth KA et al (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80(6):1298–1307

    Article  CAS  PubMed  Google Scholar 

  77. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms [J]. J Int Med Res 37(5):1528–1542

  78. Lucas T, Waisman A, Ranjan R et al (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184(7):3964–3977

    Article  CAS  PubMed  Google Scholar 

  79. Rigamonti E, Zordan P, Sciorati C et al (2014) Macrophage plasticity in skeletal muscle repair. Biomed Res Int 2014:560629

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ankeny DP, Guan Z, Popovich PG (2009) B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest 119(10):2990–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22

    Article  CAS  PubMed  Google Scholar 

  82. Cox A, Varma A, Barry J et al (2015) Nanoparticle estrogen in rat spinal cord injury elicits rapid anti-inflammatory effects in plasma, cerebrospinal fluid, and tissue. J Neurotrauma 32(18):1413–1421

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sandrow-Feinberg HR, Zhukareva V, Santi L et al (2010) PEGylated interferon-beta modulates the acute inflammatory response and recovery when combined with forced exercise following cervical spinal contusion injury. Exp Neurol 223(2):439–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vrábel D, Pour L, Ševčíková S (2019) The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 34:56–66

    Article  PubMed  Google Scholar 

  85. Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87

    Article  CAS  PubMed  Google Scholar 

  86. Cildir G, Low KC, Tergaonkar V (2016) Noncanonical NF-κB signaling in health and disease. Trends Mol Med 22(5):414–429

    Article  CAS  PubMed  Google Scholar 

  87. Sun SC (2017) The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17(9):545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  90. Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5(5):392–401

    Article  CAS  PubMed  Google Scholar 

  91. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224

    Article  CAS  PubMed  Google Scholar 

  92. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362

    Article  CAS  PubMed  Google Scholar 

  93. Wertz IE, Dixit VM (2010) Signaling to NF-kappaB: regulation by ubiquitination. Cold Spring Harb Perspect Biol 2(3):a003350

    Article  PubMed  PubMed Central  Google Scholar 

  94. Israël A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2(3):a000158

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sun SC, Ganchi PA, Ballard DW et al (1993) NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science (New York, NY) 259(5103):1912–1915

    Article  CAS  Google Scholar 

  96. Tam WF, Sen R (2001) IkappaB family members function by different mechanisms. J Biol Chem 276(11):7701–7704

    Article  CAS  PubMed  Google Scholar 

  97. Baldwin AS, JR (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  CAS  PubMed  Google Scholar 

  98. Sun SC, Ley SC (2008) New insights into NF-kappaB regulation and function. Trends Immunol 29(10):469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoffmann A, Natoli G, Ghosh G (2006) Transcriptional regulation via the NF-kappaB signaling module. Oncogene 25(51):6706–6716

    Article  CAS  PubMed  Google Scholar 

  100. Whiteside ST, Epinat JC, Rice NR et al (1997) I kappa B epsilon, a novel member of the I kappa B family, controls RelA and cRel NF-kappa B activity. EMBO J 16(6):1413–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  102. Jimi E, Fei H, Nakatomi C (2019) NF-κB signaling regulates physiological and pathological chondrogenesis [J]. Int J Mol Sci 20(24)

  103. Häcker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006(357):re13

    Article  PubMed  Google Scholar 

  104. Ruland J (2011) Return to homeostasis: downregulation of NF-κB responses. Nat Immunol 12(8):709–714

    Article  CAS  PubMed  Google Scholar 

  105. Rao P, Hayden MS, Long M et al (2010) IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response [J]. Nature 466(7310):1115–1119

  106. Mortezaee K, Najafi M, Farhood B et al (2019) NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 234(10):17187–17204

    Article  CAS  PubMed  Google Scholar 

  107. Liao G, Zhang M, Harhaj EW et al (2004) Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 279(25):26243–26250

    Article  CAS  PubMed  Google Scholar 

  108. Sun SC (2010) Controlling the fate of NIK: a central stage in noncanonical NF-kappaB signaling. Sci Signal 3(123):pe18

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sanjo H, Zajonc DM, Braden R et al (2010) Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-beta receptor. J Biol Chem 285(22):17148–17155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7(2):401–409

    Article  CAS  PubMed  Google Scholar 

  111. Senftleben U, Cao Y, Xiao G et al (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science (New York, NY) 293(5534):1495–1499

    Article  CAS  Google Scholar 

  112. Abramson J, Anderson G (2017) Thymic epithelial cells. Annu Rev Immunol 35:85–118

    Article  CAS  PubMed  Google Scholar 

  113. Akiyama T, Shimo Y, Yanai H et al (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29(3):423–437

    Article  CAS  PubMed  Google Scholar 

  114. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71(2):281–299

    PubMed  Google Scholar 

  115. Norden DM, Trojanowski PJ, Villanueva E et al (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300–316

    Article  PubMed  Google Scholar 

  116. Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9(3-4):259–275

    Article  CAS  PubMed  Google Scholar 

  117. Guadagno J, Xu X, Karajgikar M et al (2013) Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death Dis 4(3):e538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Teeling JL, Perry VH (2009) Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158(3):1062–1073

    Article  CAS  PubMed  Google Scholar 

  119. Liu G, Fan G, Guo G et al (2017) FK506 attenuates the inflammation in rat spinal cord injury by inhibiting the activation of NF-κB in microglia cells. Cell Mol Neurobiol 37(5):843–855

    Article  CAS  PubMed  Google Scholar 

  120. Bulek K, Liu C, Swaidani S et al (2011) The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 12(9):844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Awane M, Andres PG, Li DJ et al (1999) NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells. J Immunol 162(9):5337–5344

    Article  CAS  PubMed  Google Scholar 

  122. Han X, Lu M, Wang S et al (2012) Targeting IKK/NF-κB pathway reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 511(1):28–32

    Article  CAS  PubMed  Google Scholar 

  123. Rafati DS, Geissler K, Johnson K et al (2008) Nuclear factor-kappaB decoy amelioration of spinal cord injury-induced inflammation and behavior outcomes. J Neurosci Res 86(3):566–580

    Article  CAS  PubMed  Google Scholar 

  124. Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 26(10):555–563

    Article  CAS  PubMed  Google Scholar 

  125. Chen X, Wu S, Chen C et al (2017) Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation 14(1):143

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jiang J, Luo Y, Qin W et al (2017) Electroacupuncture suppresses the NF-κB signaling pathway by upregulating cylindromatosis to alleviate inflammatory injury in cerebral ischemia/reperfusion rats. Front Mol Neurosci 10:363

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577

    Article  CAS  PubMed  Google Scholar 

  128. Zamanian JL, Xu L, Foo LC et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gensel JC, Nakamura S, Guan Z et al (2009) Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 29(12):3956–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. O'neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20(6):252–258

    Article  CAS  PubMed  Google Scholar 

  131. Wang X, Zhang Z, Zhu Z et al (2021) Photobiomodulation promotes repair following spinal cord injury by regulating the transformation of A1/A2 reactive astrocytes. Front Neurosci 15:768262

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wang YF, Zu JN, Li J et al (2014) Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation [J]. Neurosci Lett 560(51–6)

  133. Lim H, Lee H, Noh K et al (2017) IKK/NF-κB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 158(9):1666–1677

    Article  CAS  PubMed  Google Scholar 

  134. Li M, Rong ZJ, Cao Y et al (2021) Utx regulates the NF-κB signaling pathway of natural stem cells to modulate macrophage migration during spinal cord injury. J Neurotrauma 38(3):353–364

    Article  PubMed  Google Scholar 

  135. Yamauchi K, Osuka K, Takayasu M et al (2006) Activation of JAK/STAT signalling in neurons following spinal cord injury in mice. J Neurochem 96(4):1060–1070

    Article  CAS  PubMed  Google Scholar 

  136. Dominguez E, Rivat C, Pommier B et al (2008) JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem 107(1):50–60

    Article  CAS  PubMed  Google Scholar 

  137. Cha B, Lim JW, Kim H (2015) Jak1/Stat3 is an upstream signaling of NF-κB activation in Helicobacter pylori-induced IL-8 production in gastric epithelial AGS cells. Yonsei Med J 56(3):862–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Greenhill CJ, Rose-John S, Lissilaa R et al (2011) IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J Immunol 186(2):1199–1208

    Article  CAS  PubMed  Google Scholar 

  139. Yue J, LóPEZ JM (2020) Understanding MAPK signaling pathways in apoptosis [J]. Int J Mol Sci 21(7)

  140. Liu Z, Yao X, Jiang W et al (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 17(1):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu Z, Yao X, Sun B et al (2021) Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 168:142–154

    Article  CAS  PubMed  Google Scholar 

  142. Mercer BA, D'armiento JM (2006) Emerging role of MAP kinase pathways as therapeutic targets in COPD. Int J Chron Obstruct Pulmon Dis 1(2):137–150

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Guimarães MR, Leite FR, Spolidorio LC et al (2013) Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch Oral Biol 58(10):1309–1317

    Article  PubMed  PubMed Central  Google Scholar 

  144. Fukuchi M, Nakajima M, Fukai Y et al (2004) Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 108(6):818–824

    Article  CAS  PubMed  Google Scholar 

  145. Walker KS, Deak M, Paterson A et al (1998) Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J 331((Pt 1) (Pt 1):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Meier R, Alessi DR, Cron P et al (1997) Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem 272(48):30491–30497

    Article  CAS  PubMed  Google Scholar 

  147. Recabarren D, Alarcón M (2017) Gene networks in neurodegenerative disorders. Life Sci 183:83–97

    Article  CAS  PubMed  Google Scholar 

  148. He X, Li Y, Deng B et al (2022) The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities. Cell Prolif 55(9):e13275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xiao CL, Yin WC, Zhong YC et al (2022) The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 156:113881

    Article  CAS  PubMed  Google Scholar 

  150. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58(3):253–263

    PubMed  Google Scholar 

  151. Cheong MH, Lee SR, Yoo HS et al (2011) Anti-inflammatory effects of Polygala tenuifolia root through inhibition of NF-κB activation in lipopolysaccharide-induced BV2 microglial cells. J Ethnopharmacol 137(3):1402–1408

    Article  PubMed  Google Scholar 

  152. Dong H, Zhang X, Dai X et al (2014) Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway. J Neuroinflammation 11:140

    Article  PubMed  PubMed Central  Google Scholar 

  153. Birkenkamp KU, Coffer PJ (2003) FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J Immunol 171(4):1623–1629

    Article  CAS  PubMed  Google Scholar 

  154. Guha M, Mackman N (2002) The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 277(35):32124–32132

    Article  CAS  PubMed  Google Scholar 

  155. Chandran R, Mehta SL, Vemuganti R (2017) Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 111:12–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou J, Shuang O, Li J et al (2019) miR-34a alleviates spinal cord injury via TLR4 signaling by inhibiting HMGB-1. Exp Ther Med 17(3):1912–1918

    CAS  PubMed  Google Scholar 

  157. Fei M, Li Z, Cao Y et al (2021) MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKβ/NF-κB. Lab Invest 101(9):1238–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Deng G, Gao Y, Cen Z et al (2018) miR-136-5p regulates the inflammatory response by targeting the IKKβ/NF-κB/A20 pathway after spinal cord injury. Cell Physiol Biochem 50(2):512–524

    Article  CAS  PubMed  Google Scholar 

  159. Zhou HJ, Wang LQ, Xu QS et al (2016) Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells [J]. Exp Cell Res 349(1):60–67

  160. Tan Y, Yu L, Zhang C et al (2018) miRNA-146a attenuates inflammation in an in vitro spinal cord injury model via inhibition of TLR4 signaling. Exp Ther Med 16(4):3703–3709

    PubMed  PubMed Central  Google Scholar 

  161. Wan G, An Y, Tao J et al (2020) MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep 40(3)

  162. Zhao CL, Cui HA, Zhang XR (2019) MiR-543-5p inhibits inflammation and promotes nerve regeneration through inactivation of the NF-κB in rats after spinal cord injury. Eur Rev Med Pharmacol Sci 23(3 Suppl):39–46

    PubMed  Google Scholar 

  163. Jiang Z, Zhang J (2021) Mesenchymal stem cell-derived exosomes containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway. Cell Cycle (Georgetown, Tex) 20(10):993–1009

    Article  CAS  PubMed  Google Scholar 

  164. Wang B, Shen PF, Qu YX et al (2019) miR-940 promotes spinal cord injury recovery by inhibiting TLR4/NF-κB pathway-mediated inflammation. Eur Rev Med Pharmacol Sci 23(8):3190–3197

    CAS  PubMed  Google Scholar 

  165. Zhou W, Yuan T, Gao Y et al (2017) IL-1β-induces NF-κB and upregulates microRNA-372 to inhibit spinal cord injury recovery. J Neurophysiol 117(6):2282–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Niu F, Pan S (2021) MicroRNA-488 inhibits neural inflammation and apoptosis in spinal cord injury through restraint on the HMGB1/TLR4/NF-κB signaling pathway. Neuroreport 32(12):1017–1026

    Article  CAS  PubMed  Google Scholar 

  167. Zhou HJ, Wang LQ, Wang DB et al (2018) Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-κB signaling pathway. Am J Physiol Cell Physiol 315(1):C52–c61

    Article  CAS  PubMed  Google Scholar 

  168. Deng Q, Ma L, Chen T et al (2021) NF-κB 1-induced LINC00665 regulates inflammation and apoptosis of neurons caused by spinal cord injury by targeting miR-34a-5p. Neurol Res 43(5):418–427

    Article  CAS  PubMed  Google Scholar 

  169. Zhou HJ, Wang LQ, Zhan RY et al (2022) lncRNA MEG3 restrained the M1 polarization of microglia in acute spinal cord injury through the HuR/A20/NF-κB axis. Brain Pathol 32(5):e13070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. He R, Tang GL, Niu L et al (2020) Quietness Circ 0000962 promoted nerve cell inflammation through PIK3CA/Akt/NF-κB signaling by miR-302b-3p in spinal cord injury. Ann Palliat Med 9(2):190–198

    Article  PubMed  Google Scholar 

  171. Feng JS, Sun JD, Wang XD et al (2019) MicroRNA-204-5p targets SOX11 to regulate the inflammatory response in spinal cord injury. Eur Rev Med Pharmacol Sci 23(10):4089–4096

    PubMed  Google Scholar 

  172. Sun Y, Liu B, Zheng X et al (2019) Notoginsenoside R1 alleviates lipopolysaccharide-triggered PC-12 inflammatory damage via elevating microRNA-132. Artif Cells Nanomed Biotechnol 47(1):1808–1814

    Article  CAS  PubMed  Google Scholar 

  173. Lu B, Nakamura T, Inouye K et al (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488(7413):670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Avgousti DC, Herrmann C, Kulej K et al (2016) A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 535(7610):173–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fang P, Schachner M, Shen YQ (2012) HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 45(3):499–506

    Article  CAS  PubMed  Google Scholar 

  176. Huang Y (2018) The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med 22(12):5768–5775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chen LL, Zhao JC (2014) Functional analysis of long noncoding RNAs in development and disease. Adv Exp Med Biol 825:129–158

    Article  CAS  PubMed  Google Scholar 

  178. Zhang T, Li K, Zhang ZL et al (2021) LncRNA Airsci increases the inflammatory response after spinal cord injury in rats through the nuclear factor kappa B signaling pathway. Neural Regen Res 16(4):772–777

    Article  PubMed  Google Scholar 

  179. Shi Z, Pan B, Feng S (2018) The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 22(4):2055–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lin J, Pan X, Huang C et al (2020) Dual regulation of microglia and neurons by Astragaloside IV-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury. J Cell Mol Med 24(1):671–685

    Article  CAS  PubMed  Google Scholar 

  181. Wen ZJ, Xin H, Wang YC et al (2021) Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol Ther Nucleic Acids 26:828–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bakan A, Lazo JS, Wipf P et al (2008) Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Curr Med Chem 15(25):2536–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xie XK, Xu ZK, Xu K et al (2020) DUSP19 mediates spinal cord injury-induced apoptosis and inflammation in mouse primary microglia cells via the NF-kB signaling pathway. Neurol Res 42(1):31–38

    Article  CAS  PubMed  Google Scholar 

  184. Druey KM (2017) Emerging roles of regulators of G protein signaling (RGS) proteins in the immune system. Adv Immunol 136:315–351

    Article  CAS  PubMed  Google Scholar 

  185. Moratz C, Hayman JR, Gu H et al (2004) Abnormal B-cell responses to chemokines, disturbed plasma cell localization, and distorted immune tissue architecture in Rgs1-/- mice. Mol Cell Biol 24(13):5767–5775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Caballero-Franco C, Kissler S (2016) The autoimmunity-associated gene RGS1 affects the frequency of T follicular helper cells. Genes Immun 17(4):228–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lan X, Han X, Li Q et al (2017) Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun 61:326–339

    Article  CAS  PubMed  Google Scholar 

  188. Ding Y, Qiu Y, Zou L et al (2015) Three conserved MyD88-recruiting TLR residues exert different effects on the human TLR4 signaling pathway. Immunol Res 62(2):213–221

    Article  CAS  PubMed  Google Scholar 

  189. Feng D, Yu J, Bao L et al (2022) Inhibiting RGS1 attenuates secondary inflammation response and tissue degradation via the TLR/TRIF/NF-κB pathway in macrophage post spinal cord injury. Neurosci Lett 768:136374

    Article  CAS  PubMed  Google Scholar 

  190. Mazucanti CH, Cabral-Costa JV, Vasconcelos AR et al (2015) Longevity pathways (mTOR, SIRT, insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Curr Top Med Chem 15(21):2116–2138

    Article  CAS  PubMed  Google Scholar 

  191. Xu C, Huang X, Tong Y et al (2020) Icariin modulates the sirtuin/NF-κB pathway and exerts anti-aging effects in human lung fibroblasts. Mol Med Rep 22(5):3833–3839

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu MY, Zhang MJ, Xie MJ (2018) Molecular mechanisms of anti-inflammatory action of AMPK. Sheng Li Xue Bao 70(3):329–334

    PubMed  Google Scholar 

  193. Haque A, Drasites KP, Cox A et al (2021) Protective effects of estrogen via nanoparticle delivery to attenuate myelin loss and neuronal death after spinal cord injury. Neurochem Res 46(11):2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Caldenhoven E, Liden J, Wissink S et al (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9(4):401–412

    CAS  PubMed  Google Scholar 

  195. Amini Pishva A, Akbari M, Farahabadi A et al (2016) Effect of estrogen therapy on TNF-α and iNOS gene expression in spinal cord injury model. Acta Med Iran 54(5):296–301

    PubMed  Google Scholar 

  196. Sribnick EA, Wingrave JM, Matzelle DD et al (2005) Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury in rats. J Neurosci Res 82(2):283–293

    Article  CAS  PubMed  Google Scholar 

  197. Hu J, Rodemer W, Zhang G et al (2021) Chondroitinase ABC promotes axon regeneration and reduces retrograde apoptosis signaling in Lamprey. Front Cell Dev Biol 9:653638

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kelleher FC, O'sullivan H, Smyth E et al (2013) Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 34(10):2198–2205

    Article  CAS  PubMed  Google Scholar 

  199. Jia R, Li Y, Cao L et al (2019) Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 215:56–66

    Article  CAS  PubMed  Google Scholar 

  200. Ren Z, Wang L, Cui J et al (2013) Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Die Pharmazie 68(8):689–694

    CAS  PubMed  Google Scholar 

  201. Jiang WL, Yong X, Zhang SP et al (2012) Forsythoside B protects against experimental sepsis by modulating inflammatory factors. Phytother Res 26(7):981–987

    Article  CAS  PubMed  Google Scholar 

  202. Li Y, Yang Y, Kang X et al (2021) Study on the anti-inflammatory effects of Callicarpa nudiflora based on the spectrum-effect relationship. Front Pharmacol 12:806808

    Article  CAS  PubMed  Google Scholar 

  203. Wu A, Yang Z, Huang Y et al (2020) Natural phenylethanoid glycosides isolated from Callicarpa kwangtungensis suppressed lipopolysaccharide-mediated inflammatory response via activating Keap1/Nrf2/HO-1 pathway in RAW 264.7 macrophages cell. J Ethnopharmacol 258:112857

    Article  CAS  PubMed  Google Scholar 

  204. Xia M, Zhang Y, Wu H et al (2022) Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury. Int Immunopharmacol 111:109120

    Article  CAS  PubMed  Google Scholar 

  205. Shan M, Yu S, Yan H et al (2017) A review on the phytochemistry, pharmacology, pharmacokinetics and toxicology of geniposide, a natural product. Molecules 22(10):1689

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lee HY, Lee GH, Lee MR et al (2013) Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation. PloS One 8(12):e81349

    Article  PubMed  PubMed Central  Google Scholar 

  207. Huang B, Chen P, Huang L et al (2017) Geniposide attenuates post-ischaemic neurovascular damage via GluN2A/AKT/ ERK-dependent mechanism. Cell Physiol Biochem 43(2):705–716

    Article  CAS  PubMed  Google Scholar 

  208. Sato S, Kitamura H, Chino M et al (2007) A 13-week oral dose subchronic toxicity study of gardenia yellow containing geniposide in rats. Food Chem Toxicol 45(8):1537–1544

    Article  CAS  PubMed  Google Scholar 

  209. Wang J, Zhang Y, Liu R et al (2015) Geniposide protects against acute alcohol-induced liver injury in mice via up-regulating the expression of the main antioxidant enzymes. Can J Physiol Pharmacol 93(4):261–267

    Article  CAS  PubMed  Google Scholar 

  210. Zhao C, Lv C, Li H et al (2016) Geniposide protects primary cortical neurons against oligomeric Aβ1-42-induced neurotoxicity through a mitochondrial pathway. PloS One 11(4):e0152551

    Article  PubMed  PubMed Central  Google Scholar 

  211. Li Y, Qiu H, Yao S et al (2021) Geniposide exerts protective effects on spinal cord injury in rats by inhibiting the IKKs/NF-κB signaling pathway. Int Immunopharmacol 100:108158

    Article  CAS  PubMed  Google Scholar 

  212. Zhu Y, Zhu H, Wang Z et al (2017) Wogonoside alleviates inflammation induced by traumatic spinal cord injury by suppressing NF-κB and NLRP3 inflammasome activation. Exp Ther Med 14(4):3304–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Feng X, Chen X, Zaeem M et al (2022) Sesamol attenuates neuroinflammation by regulating the AMPK/SIRT1/NF-κB signaling pathway after spinal cord injury in mice. Oxid Med Cell Longev 2022:8010670

    Article  PubMed  PubMed Central  Google Scholar 

  214. Jung KK, Lee HS, Cho JY et al (2006) Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci 79(21):2022–2031

    Article  CAS  PubMed  Google Scholar 

  215. Huang Y, Zhu N, Chen T et al (2019) Triptolide suppressed the microglia activation to improve spinal cord injury through miR-96/IKKβ/NF-κB pathway. Spine 44(12):E707–Ee14

    Article  PubMed  Google Scholar 

Download references

Funding

This work is supported by funding of Ganzhou City “Science and technology and National Regional Medical Center” joint project (no. 2022-YB1396) and Ganzhou City guiding science and technology plan project (no. 20222ZDX7705 ).

Author information

Authors and Affiliations

Authors

Contributions

Yi Ding and Qin Chen are major contributors towards the writing. Yi Ding and Qin Chen conceived and designed the review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qin Chen.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Chen, Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 60, 5292–5308 (2023). https://doi.org/10.1007/s12035-023-03411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03411-x

Keywords

Navigation