Skip to main content

Advertisement

Log in

Over-expression of miR-3584-5p Represses Nav1.8 Channel Aggravating Neuropathic Pain caused by Chronic Constriction Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nav1.8, a tetrodotoxin-resistant voltage-gated sodium channels (VGSCs) subtype encoded by SCN10A, which plays an important role in the production and transmission of peripheral neuropathic pain signals. Studies have shown that VGSCs may be key targets of MicroRNAs (miRNAs) in the regulation of neuropathic pain. In our study, bioinformatics analysis showed that the targeting relationship between miR-3584-5p and Nav1.8 was the most closely. The purpose of this study was to investigate the roles of miR-3584-5p and Nav1.8 in neuropathic pain. The effects of miR-3584-5p on chronic constriction injury (CCI)-induced neuropathic pain in rats was investigated by intrathecal injection of miR-3584-5p agomir (an agonist, 20 μM, 15 μL) or antagomir (an antagonist, 20 μM, 15 μL). The results showed that over-expression of miR-3584-5p aggravated neuronal injury by hematoxylin–eosin (H&E) staining and mechanical/thermal hypersensitivity in CCI rats. MiR-3584-5p indirectly inhibited the expression of Nav1.8 by up-regulating the expression of key proteins in the ERK5/CREB signaling pathway, and also inhibited the current density of the Nav1.8 channel, changed its channel dynamics characteristic, thereby accelerating the transmission of pain signals, and further aggravating pain. Similarly, in PC12 and SH-SY5Y cell cultures, miR-3584-5p increased the level of reactive oxygen species (ROS) and inhibited mitochondrial membrane potential (Δψm) in the mitochondrial pathway, decreased the ratio of apoptosis-related factor Bcl-2/Bax, and thus promoted neuronal apoptosis. In brief, over-expression of miR-3584-5p aggravates neuropathic pain by directly inhibiting the current density of Nav1.8 channel and altering its channel dynamics, or indirectly inhibiting Nav1.8 expression through ERK5/CREB pathway, and promoting apoptosis through mitochondrial pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study are included in this published article.

Abbreviations

MiRNAs:

MicroRNAs

CCI:

Chronic constriction injury

qRT-PCR:

Quantitative real-time polymerase chain reaction

H&E:

Hematoxylin-eosin

DRG:

Dorsal root ganglion

ERK5:

Extracellular signal regulated kinase 5

CREB:

CAMP-response element binding protein

ROS:

Reactive oxygen species

Bcl-2:

B-cell-lymphoma-2

Bax:

Bcl2-associated X-protein

AO/EB:

Acridine orange and ethidium bromide

Δψm:

Mitochondrial membrane potential

VGSCs:

Voltage-gated sodium channels

References

  1. Torrance N, Smith BH, Bennett MI, Lee AJ (2006) The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain 7:281–289. https://doi.org/10.1016/j.jpain.2005.11.008

    Article  PubMed  Google Scholar 

  2. Hameed S (2019) Nav1.7 and Nav1.8: Role in the pathophysiology of pain. Mol Pain 15:1–11. https://doi.org/10.1177/1744806919858801

    Article  CAS  Google Scholar 

  3. Li N, Liu B, Wu W, Hong Y, Zhang J, Liu Y, Zhang M, Zhang X et al (2020) Upregulation of transcription factor 4 downregulates Na(V)1.8 expression in DRG neurons and prevents the development of rat inflammatory and neuropathic hypersensitivity. Exp Neurol 327:113240. https://doi.org/10.1016/j.expneurol.2020.113240

    Article  CAS  PubMed  Google Scholar 

  4. Gupta S, Figueredo VM (2014) Tachycardia mediated cardiomyopathy: pathophysiology, mechanisms, clinical features and management. Int J Cardiol 172:40–46. https://doi.org/10.1016/j.ijcard.2013.12.180

    Article  PubMed  Google Scholar 

  5. Agarwal N, Offermanns S, Kuner R (2004) Conditional gene deletion in primary nociceptive neurons of trigeminal ganglia and dorsal root ganglia. Genesis 38:122–129. https://doi.org/10.1002/gene.20010

    Article  CAS  PubMed  Google Scholar 

  6. Zhang M, Han W, Zheng J, Meng F, Jiao X, Hu S, Xu H (2015) Inhibition of Hyperpolarization-Activated Cation Current in Medium-Sized DRG Neurons Contributed to the Antiallodynic Effect of Methylcobalamin in the Rat of a Chronic Compression of the DRG. Neural Plast 2015:197392. https://doi.org/10.1155/2015/197392

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murali SS, Napier IA, Mohammadi SA, Alewood PF, Lewis RJ, Christie MJ (2015) High-voltage-activated calcium current subtypes in mouse DRG neurons adapt in a subpopulation-specific manner after nerve injury. J Neurophysiol 113:1511–1519. https://doi.org/10.1152/jn.00608.2014

    Article  CAS  PubMed  Google Scholar 

  8. Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22:10277–10290. https://doi.org/10.1523/jneurosci.22-23-10277.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640. https://doi.org/10.1152/jn.2001.86.2.629

    Article  CAS  PubMed  Google Scholar 

  10. Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, Nassar MA, Dickenson AH et al (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321:702–705. https://doi.org/10.1126/science.1156916

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101:360–365

    Article  CAS  PubMed  Google Scholar 

  12. Landgraf P, Rusu M, Sheridan R, Sewer A, Tuschl T (2007) A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing. Cell 129:1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH, Cai WH (2014) Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochem Res 39:76–83. https://doi.org/10.1007/s11064-013-1192-z

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L et al (2010) Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30:10860–10871. https://doi.org/10.1523/jneurosci.1980-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Badshah II, Baines DL, Dockrell ME (2014) Erk5 is a mediator to TGFβ1-induced loss of phenotype and function in human podocytes. Front Pharmacol 5:71. https://doi.org/10.3389/fphar.2014.00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang CG, Song SY, Ding YL, Guo SQ, Liu X, Hao S, Li X, Chen N et al (2015) Extracellular Signal-Regulated Kinase 5 in the Cerebrospinal Fluid-Contacting Nucleus Contributes to Neuropathic Pain in Rats. Pain Physician 18:E1073–E1081

    PubMed  Google Scholar 

  17. Li X, Kang L, Li G, Zeng H, Zhang L, Ling X, Dong H, Liang S et al (2013) Intrathecal leptin inhibits expression of the P2X2/3 receptors and alleviates neuropathic pain induced by chronic constriction sciatic nerve injury. Mol Pain 9:65. https://doi.org/10.1186/1744-8069-9-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mestre C, Pélissier T, Fialip J, Wilcox G, Eschalier A (1994) A method to perform direct transcutaneous intrathecal injection in rats. J Pharmacol Toxicol Methods 32:197–200

    Article  CAS  PubMed  Google Scholar 

  19. Tu WZ, Cheng RD, Cheng B, Lu J, Cao F, Lin HY, Jiang YX, Wang JZ et al (2012) Analgesic effect of electroacupuncture on chronic neuropathic pain mediated by P2X3 receptors in rat dorsal root ganglion neurons. Neurochem Int 60:379–386. https://doi.org/10.1016/j.neuint.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  20. Gao YH, Chen SP, Wang JY, Qiao LN, Meng FY, Xu QL, Liu JL (2012) Differential proteomics analysis of the analgesic effect of electroacupuncture intervention in the hippocampus following neuropathic pain in rats. BMC Complement Altern Med 12:241. https://doi.org/10.1186/1472-6882-12-241

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gao X, Gulari E and Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73:579–596. https://doi.org/10.1002/bip.20005

  22. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  23. Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P (2008) Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J Gen Physiol 131:211–225. https://doi.org/10.1085/jgp.200709935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010) Sodium Channels in Normal and Pathological Pain. Annu Rev Neurosci 33:325–347

    Article  CAS  PubMed  Google Scholar 

  25. Zhu M, Wang J, Xie J, Chen L, Wei X, Jiang X, Bao M, Qiu Y et al (2018) Design, synthesis, and evaluation of chalcone analogues incorporate α, β-Unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur J Med Chem 157:1395–1405. https://doi.org/10.1016/j.ejmech.2018.08.072

    Article  CAS  PubMed  Google Scholar 

  26. Yu LN, Sun LH, Wang M, Wang LJ, Wu Y, Yu J, Wang WN, Zhang FJ et al (2017) EphrinB-EphB Signaling Induces Hyperalgesia through ERK5/CREB Pathway in Rats. Pain Phys 20:E563-e574

    Google Scholar 

  27. Abbas N, Gaudioso-Tyzra C, Bonnet C, Gabriac M, Amsalem M, Lonigro A, Padilla F, Crest M et al (2013) The scorpion toxin Amm VIII induces pain hypersensitivity through gain-of-function of TTX-sensitive Na+ channels. Pain 154:1204–1215. https://doi.org/10.1016/j.pain.2013.03.037

    Article  CAS  PubMed  Google Scholar 

  28. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898. https://doi.org/10.1038/nature05413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V et al (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26:12852–12860. https://doi.org/10.1523/jneurosci.4015-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li CL, Liu XF, Li GX, Ban MQ, Chen JZ, Cui Y, Zhang JH, Wu CF (2016) Antinociceptive Effects of AGAP, a Recombinant Neurotoxic Polypeptide: Possible Involvement of the Tetrodotoxin-Resistant Sodium Channels in Small Dorsal Root Ganglia Neurons. Front Pharmacol 7:496. https://doi.org/10.3389/fphar.2016.00496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Decosterd I, Ji RR, Abdi S, Tate S, Woolf CJ (2002) The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain 96:269–277. https://doi.org/10.1016/s0304-3959(01)00456-0

    Article  CAS  PubMed  Google Scholar 

  32. Dib-Hajj S, Black JA, Felts P, Waxman SG (1996) Down-regulation of transcripts for Na channel alpha-SNS in spinal sensory neurons following axotomy. Proc Natl Acad Sci U S A 93:14950–14954. https://doi.org/10.1073/pnas.93.25.14950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dib-Hajj SD, Fjell J, Cummins TR, Zheng Z, Fried K, LaMotte R, Black JA, Waxman SG (1999) Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 83:591–600. https://doi.org/10.1016/s0304-3959(99)00169-4

    Article  CAS  PubMed  Google Scholar 

  34. Amir R, Kocsis JD, Devor M (2005) Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. J Neurosci 25:2576–2585. https://doi.org/10.1523/jneurosci.4118-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song Y, Liu Z, Zhang Q, Li C, Jin W, Liu L, Zhang J, Zhang J (2017) Investigation of Binding Modes and Functional Surface of Scorpion Toxins ANEP to Sodium Channels 1.7. Toxins (Basel) 9:387–403. https://doi.org/10.3390/toxins9120387

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Li Y, Zhu Y, Zhang L, Ji J, Gui M, Li C, Song Y (2021) Study of Anti-Inflammatory and Analgesic Activity of Scorpion Toxins DKK-SP1/2 from Scorpion Buthus martensii Karsch (BmK). Toxins (Basel) 13:498–514. https://doi.org/10.3390/toxins13070498

    Article  CAS  PubMed  Google Scholar 

  37. Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. Bmj 348:f7656. https://doi.org/10.1136/bmj.f7656

    Article  PubMed  Google Scholar 

  38. Roza C, Laird JM, Souslova V, Wood JN, Cervero F (2003) The tetrodotoxin-resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J Physiol 550:921–926. https://doi.org/10.1113/jphysiol.2003.046110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Sun H, Della Penna K, Benz RJ, Xu J, Gerhold DL, Holder DJ, Koblan KS (2002) Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 114:529–546. https://doi.org/10.1016/s0306-4522(02)00341-x

    Article  CAS  PubMed  Google Scholar 

  40. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414. https://doi.org/10.1016/j.cell.2007.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woolf C, Salter M (2000) Neuronal plasticity: increasing the gain in pain. Science (New York, N.Y.) 288:1765–1769. https://doi.org/10.1126/science.288.5472.1765

    Article  CAS  PubMed  Google Scholar 

  42. Cavanaugh JE (2010) Role of extracellular signal regulated kinase 5 in neuronal survival. Eur J Biochem 271:2056–2059

    Article  Google Scholar 

  43. Ma W, Quirion R (2001) Increased phosphorylation of cyclic AMP response element-binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain 93:295–301

    Article  CAS  PubMed  Google Scholar 

  44. Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF (2011) Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 6:e23423. https://doi.org/10.1371/journal.pone.0023423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang P, Li ZW, Zhu Z, Zhang ZY, Liu J (2019) Inhibition of miR-214-5p attenuates inflammatory chemotaxis and nerve regeneration obstruction after spinal cord injury in rats. Eur Rev Med Pharmacol Sci 23:2332–2339. https://doi.org/10.26355/eurrev_201903_17376

    Article  CAS  PubMed  Google Scholar 

  46. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525. https://doi.org/10.1074/jbc.M210432200

    Article  CAS  PubMed  Google Scholar 

  47. Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, Xia Z (2004) Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 79:137–146. https://doi.org/10.1093/toxsci/kfh089

    Article  CAS  PubMed  Google Scholar 

  48. Zollinger PE, Tuinebreijer WE, Breederveld RS, Kreis RW (2007) Can vitamin C prevent complex regional pain syndrome in patients with wrist fractures? A randomized, controlled, multicenter dose-response study. J Bone Joint Surg Am 89:1424–1431. https://doi.org/10.2106/jbjs.F.01147

    Article  CAS  PubMed  Google Scholar 

  49. Jevtović-Todorović V, Todorović SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW (1998) Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4:460–463. https://doi.org/10.1038/nm0498-460

    Article  PubMed  Google Scholar 

  50. Lin CC, Chen WN, Chen CJ, Lin YW, Zimmer A, Chen CC (2012) An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci U S A 109:E76-83. https://doi.org/10.1073/pnas.1108903108

    Article  PubMed  Google Scholar 

  51. Linley JE, Ooi L, Pettinger L, Kirton H, Boyle JP, Peers C, Gamper N (2012) Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci U S A 109:E1578-1586. https://doi.org/10.1073/pnas.1201544109

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of Liaoning Province (grant number: 20180550253); Scientific Research Foundation of the Education Department of Liaoning Province (grant number LJKZ0956); Scientific Research Staring Foundation for the Returned Overseas Scholars, Shenyang Pharmaceutical University (grant number GGJJ2021101); National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number 2018ZX09735005).

Funding

This work was supported by the National Natural Science Foundation of Liaoning Province (grant number: 20180550253); Scientific Research Foundation of the Education Department of Liaoning Province (grant number LJKZ0956); Scientific Research Staring Foundation for the Returned Overseas Scholars, Shenyang Pharmaceutical University (grant number GGJJ2021101); National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number 2018ZX09735005).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Validation, formal analysis, data curation, writing-original draft, writing-Review & editing and visualization were performed by Ran Yang. Conceptualization, methodology, formal analysis, investigation and data curation were performed by Qian-qian Wang, Yuan Feng and Xue-hao Li. Conceptualization, methodology and formal analysis were performed by Gui-xia Li. Methodology, formal analysis and data curation were performed by Xi-jin Zhu and Feng-lin She. Conceptualization, resources, writing-original draft, writing-review & editing, supervision, project administration and Funding acquisition were performed by Chun-li Li. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-li Li.

Ethics declarations

Ethics Approval

This study was approved by the Animal Ethics Committee of Shenyang Pharmaceutical University, China (SCXK (Liao) 2015–0001).

Consent to Participate

N/A.

Consent for Publication

Authors have reviewed and approved the manuscript.

Competing Interest

Authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 618 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Wang, Qq., Feng, Y. et al. Over-expression of miR-3584-5p Represses Nav1.8 Channel Aggravating Neuropathic Pain caused by Chronic Constriction Injury. Mol Neurobiol 60, 5237–5255 (2023). https://doi.org/10.1007/s12035-023-03394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03394-9

Keywords

Navigation