Skip to main content
Log in

Network Pharmacology Prediction and Experimental Verification for Anti-Ferroptosis of Edaravone After Experimental Intracerebral Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal ferroptosis plays an important role in secondary brain injuries after intracerebral hemorrhage (ICH). Edaravone (Eda) is a promising free radical scavenger that inhibits ferroptosis in neurological diseases. However, its protective effects and underlying mechanisms in ameliorating post-ICH ferroptosis remain unclear. We employed a network pharmacology approach to determine the core targets of Eda against ICH. Forty-two rats were subjected to successful striatal autologous whole blood injection (n=28) or sham operation (n=14). The 28 blood-injected rats were randomly assigned to either the Eda or vehicle group (n=14) for immediate administration and then for 3 consecutive days. Hemin-induced HT22 cells were used for in vitro studies. The effects of Eda in ICH on ferroptosis and the MEK/ERK pathway were investigated in vivo and in vitro. Network pharmacology-based analysis revealed that candidate targets of Eda-treated ICH might be related to ferroptosis; among which prostaglandin G/H synthase 2 (PTGS2) was a ferroptosis marker. In vivo experiments showed that Eda alleviated sensorimotor deficits and decreased PTGS2 expression (all p<0.05) after ICH. Eda rescued neuron pathological changes after ICH (increased NeuN+ cells and decreased FJC+ cells, all p<0.01). In vitro experiments showed that Eda reduced intracellular reactive oxygen species and reversed mitochondria damage. Eda repressed ferroptosis by decreasing malondialdehyde and iron deposition and by influencing ferroptosis-related protein expression (all p<0.05) in ICH rats and hemin-induced HT22 cells. Mechanically, Eda significantly suppressed phosphorylated-MEK and phosphorylated-ERK1/2 expression. These results indicate that Eda has protective effects on ICH injury through ferroptosis and MEK/ERK pathway suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALB :

albumin

COX2 :

cyclooxygenase-2

ERK :

extracellular-regulated kinase

FJC :

Fluoro-Jade C

GPX4 :

glutathione peroxidase 4

ICH :

intracerebral hemorrhage

KEGG :

Kyoto Encyclopedia of Genes and Genomes

PPI :

protein-protein interaction

PTGS2 :

prostaglandin G/H synthase 2

ROS :

reactive oxygen species

References

  1. Hu X, Tao C, Gan Q, Zheng J, Li H, You C (2016) Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxid Med Cell Longev 2016:3215391. https://doi.org/10.1155/2016/3215391

    Article  CAS  PubMed  Google Scholar 

  2. Wasserman JK, Schlichter LC (2007) Neuron death and inflammation in a rat model of intracerebral hemorrhage: effects of delayed minocycline treatment. Brain Res 1136:208–218

    Article  CAS  PubMed  Google Scholar 

  3. Xiong XY, Wang J, Qian ZM, Yang QW (2014) Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res 5:429–441

    Article  CAS  PubMed  Google Scholar 

  4. Salvador GA (2010) Iron in neuronal function and dysfunction. Biofactors 36:103–110

    Article  CAS  PubMed  Google Scholar 

  5. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bai Q, Liu J, Wang G (2020) Ferroptosis, a regulated neuronal cell death type after intracerebral hemorrhage. Front Cell Neurosci 14:591874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Q, Han X, Lan X, Gao Y, Wan J, Durham F et al (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2:e90777

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen B, Chen Z, Liu M, Gao X, Cheng Y, Wei Y et al (2019) Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res Bull 153:122–132

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto Y, Kuwahara T, Watanabe K, Watanabe K (1996) Antioxidant activity of 3-methyl-1-phenyl-2-pyrazolin-5-one. Redox Rep 2:333–338

    Article  CAS  PubMed  Google Scholar 

  10. Feng L, Liang N, Li T, Yang Q, Jiang P, Guo S et al (2020) Efficacy and safety of edaravone for acute intracerebral haemorrhage: protocol for a systematic review and meta-analysis. BMJ Open 10:e039366

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dang L, Dong X, Yang J (2021) Influence of nanoparticle-loaded edaravone on postoperative effects in patients with cerebral hemorrhage. J Nanosci Nanotechnol 21:1202–1211

    Article  CAS  PubMed  Google Scholar 

  12. Yagi K, Kitazato KT, Uno M, Tada Y, Kinouchi T, Shimada K et al (2009) Edaravone, a free radical scavenger, inhibits mmp-9-related brain hemorrhage in rats treated with tissue plasminogen activator. Stroke 40:626–631

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H (2011) Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev 16:Cd007755

    Google Scholar 

  14. Nakamura T, Kuroda Y, Yamashita S, Zhang X, Miyamoto O, Tamiya T et al (2008) Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 39:463–469

    Article  CAS  PubMed  Google Scholar 

  15. Shang H, Cui D, Yang D, Liang S, Zhang W, Zhao W (2015) The radical scavenger edaravone improves neurologic function and perihematomal glucose metabolism after acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 24:215–222

    Article  PubMed  Google Scholar 

  16. Dang R, Wang M, Li X, Wang H, Liu L, Wu Q et al (2022) Edaravone ameliorates depressive and anxiety-like behaviors via sirt1/nrf2/ho-1/gpx4 pathway. J Neuroinflammation 19:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spasić S, Nikolić-Kokić A, Miletić S, Oreščanin-Dušić Z, Spasić MB, Blagojević D et al (2020) Edaravone may prevent ferroptosis in als. Curr Drug Targets 21:776–780

    Article  PubMed  Google Scholar 

  18. Homma T, Kobayashi S, Sato H, Fujii J (2019) Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro. Exp Cell Res 384:111592

    Article  CAS  PubMed  Google Scholar 

  19. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  20. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) Swisstargetprediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42:W32–W38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X et al (2017) Pharmmapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45:W356–w360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M et al (2015) Disgenet: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015:bav028

    Article  PubMed  Google Scholar 

  24. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T et al (2017) Genehancer: genome-wide integration of enhancers and target genes in genecards. Database (Oxford) 2017:baX028

    Article  PubMed  Google Scholar 

  25. (2021) Uniprot: The universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–d489. https://www.uniprot.org/help/publications

  26. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat Protoc 4:44–57

    Article  PubMed  Google Scholar 

  27. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  PubMed  Google Scholar 

  28. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S et al (2021) The string database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–d612

    Article  CAS  PubMed  Google Scholar 

  29. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang C, Zhan L (2022) Network pharmacology identifies therapeutic targets and the mechanisms of glutathione action in ferroptosis occurring in oral cancer. Front Pharmacol 13:851540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou N, Bao J (2020) Ferrdb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford) 2020:baaa021

    Article  CAS  PubMed  Google Scholar 

  32. Deinsberger W, Vogel J, Kuschinsky W, Auer LM, Böker DK (1996) Experimental intracerebral hemorrhage: description of a double injection model in rats. Neurol Res 18:475–477

    Article  CAS  PubMed  Google Scholar 

  33. Zhou F, Chen G, Zhang J (2009) Edaravone reduces brain oedema and attenuates cell death after intracerebral haemorrhage in mice. Brain Injury 23:353–357

    Article  PubMed  Google Scholar 

  34. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G (2002) Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33:2478–2484

    Article  PubMed  Google Scholar 

  35. Wang J, Chen R, Liu X, Shen J, Yan Y, Gao Y et al (2017) Hck promotes neuronal apoptosis following intracerebral hemorrhage. Cell Mol Neurobiol 37:251–261

    Article  CAS  PubMed  Google Scholar 

  36. Bao WD, Zhou XT, Zhou LT, Wang F, Yin X, Lu Y et al (2020) Targeting mir-124/ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell 19:e13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  CAS  PubMed  Google Scholar 

  38. Wu H, Wu T, Xu X, Wang J, Wang J (2011) Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab 31:1243–1250

    Article  CAS  PubMed  Google Scholar 

  39. Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo PC et al (2021) Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmaco. 12:629379

    Article  CAS  Google Scholar 

  40. Chu X, Wu X, Feng H, Zhao H, Tan Y, Wang L et al (2018) Coupling between interleukin-1r1 and necrosome complex involves in hemin-induced neuronal necroptosis after intracranial hemorrhage. Stroke 49:2473–2482

    Article  CAS  PubMed  Google Scholar 

  41. Wang M, Zhou C, Yu L, Kong D, Ma W, Lv B et al (2022) Upregulation of mdh1 acetylation by hdac6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage. Cell Mol Life Sci 79:356

    Article  CAS  PubMed  Google Scholar 

  42. Diao X, Cui Q, Tian N, Zhou Z, Xiang W, Jiang Y et al (2022) Hemorrhage-induced sphingosine kinase 1 contributes to ferroptosis-mediated secondary brain injury in intracerebral hemorrhage. Mol Neurobiol 59:1381–1397

    Article  CAS  PubMed  Google Scholar 

  43. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by gpx4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu T, Wu H, Wang J, Wang J (2011) Expression and cellular localization of cyclooxygenases and prostaglandin e synthases in the hemorrhagic brain. J Neuroinflammation 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  46. Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247:6960–6962

    Article  CAS  PubMed  Google Scholar 

  47. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629–652

    Article  CAS  PubMed  Google Scholar 

  48. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  49. Wan J, Ren H, Wang J (2019) Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol 4:93–95

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang CF, Cho S, Wang J (2014) (-)-epicatechin protects hemorrhagic brain via synergistic nrf2 pathways. Ann Clin Transl Neurol 1:258–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K et al (2018) N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin e(2) to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol 84:854–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M et al (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:e02523

    Article  PubMed  PubMed Central  Google Scholar 

  53. Soria FN, Zabala A, Pampliega O, Palomino A, Miguelez C, Ugedo L et al (2016) Cystine/glutamate antiporter blockage induces myelin degeneration. Glia 64:1381–1395

    Article  PubMed  Google Scholar 

  54. Zhang Z, Wu Y, Yuan S, Zhang P, Zhang J, Li H et al (2018) Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res 1701:112–125

    Article  CAS  PubMed  Google Scholar 

  55. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  CAS  PubMed  Google Scholar 

  56. Xiong XY, Liu L, Wang FX, Yang YR, Hao JW, Wang PF et al (2016) Toll-like receptor 4/myd88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage. Circulation 134:1025–1038

    Article  CAS  PubMed  Google Scholar 

  57. Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P et al (2021) Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis 12:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Yang Y, Zhang GZ, Gao M, Ge GZ, Wang QQ et al (2016) Stereotactic administration of edaravone ameliorates collagenase-induced intracerebral hemorrhage in rat. CNS Neurosci Ther 22:824–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han N, Ding S, Wu T, Zhu Y (2008) Correlation of free radical level and apoptosis after intracerebral hemorrhage in rats. Neurosci Bull 24:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoshida H, Yanai H, Namiki Y, Fukatsu-Sasaki K, Furutani N, Tada N (2006) Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev 12:9–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fan B, Pang Y, Li W, Zhao C, Zhang Y, Wang X et al (2021) Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res 16:561–566

    Article  CAS  PubMed  Google Scholar 

  62. Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J et al (2017) Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 48:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao ZY, Luan P, Huang SX, Xiao SH, Zhao J, Zhang B et al (2013) Edaravone protects HT22 neurons from H2O2-induced apoptosis by inhibiting the MAPK signaling pathway. CNS Neurosci Ther 19:163–169

Download references

Funding

This study was supported by grants from the Natural Science Foundation of China (Key Program: 82130035; General Program: 81771137, 81971103), the Scientific and Technical Project of Guangdong Province (2017A030303011), Sun Yat-sen University Clinical Research 5010 Program (2018001), the Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases (2017B030314103), Guangdong Provincial Clinical Research Center for Neurological Diseases (2020B1111170002), the Southern China International Cooperation Base for Early Intervention and Functional Rehabilitation of Neurological Diseases (2015B050501003), Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, and Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to different aspects of this manuscript.

Corresponding author

Correspondence to Jinsheng Zeng.

Ethics declarations

Ethics Approval

All experimental procedures were approved by the Institutional Animal Ethical Committee of Sun Yat-Sen University (Approval No: SYSU-IACUC-2022-001631) and were conducted following the “Guide for the Care and Use of Laboratory Animals” by the National Institute of Health in China.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Wei, J., Cai, Y. et al. Network Pharmacology Prediction and Experimental Verification for Anti-Ferroptosis of Edaravone After Experimental Intracerebral Hemorrhage. Mol Neurobiol 60, 3633–3649 (2023). https://doi.org/10.1007/s12035-023-03279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03279-x

Keywords

Navigation