Skip to main content

Advertisement

Log in

Hyperphosphorylated Tau in Mesial Temporal Lobe Epilepsy: a Neuropathological and Cognitive Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy (TLE) often courses with cognitive deficits, but its underlying neuronal basis remains unclear. Confluent data suggest that epilepsy share pathophysiological mechanisms with neurodegenerative diseases. However, as most studies analyze subjects 60 years old and older, it is challenging to rule out that neurodegenerative changes arise from age-related mechanisms rather than epilepsy in these individuals. To fill this gap, we conducted a neuropathological investigation of the hippocampal formation of 22 adults with mesial TLE and 20 age- and sex-matched controls (both younger than 60 years). Moreover, we interrogated the relationship between these neuropathological metrics and cognitive performance. Hippocampal formation extracted from patients with drug-resistant mesial TLE undergoing surgery and postmortem non-sclerotic hippocampal formation of clinically and neuropathologically controls underwent immunohistochemistry against amyloid β (Aβ), hyperphosphorylated tau (p-tau), and TAR DNA-binding protein-43 (TDP-43) proteins, followed by quantitative analysis. Patients underwent a comprehensive neuropsychological evaluation prior to surgery. TLE hippocampi showed a significantly higher burden of p-tau than controls, whereas Aβ deposits and abnormal inclusions of TDP-43 were absent in both groups. Patients with hippocampal sclerosis (HS) type 2 had higher immunostaining for p-tau than patients with HS type 1. In addition, p-tau burden was associated with impairment in attention tasks and seizures frequency. In this series of adults younger than 60 years-old, the increase of p-tau burden associated with higher frequency of seizures and attention impairment suggests the involvement of tau pathology as a potential contributor to cognitive deficits in mesial TLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Abbreviations

Aβ:

Amyloid beta

AEDs:

Antiepileptic drugs

AD:

Alzheimer’s disease

β-APP:

Beta amyloid precursor protein

BNT:

Boston Naming Test

CA:

Cornus Ammonis

CDK5:

Cyclin-dependent kinase 5

CDR:

Clinical Dementia Rating Scale

CTE:

Chronic traumatic encephalopathy

DAB:

Diaminobenzidine

DG:

Dentate gyrus

EOAD:

Early-onset Alzheimer’s disease

FTLD:

Frontotemporal lobar degeneration

GSK3b:

Glycogen synthase kinase 3b

ILAE:

International League Against Epilepsy

MAPT :

Microtubule-associated protein tau

MTLE:

Mesial temporal lobe epilepsy

NFT:

Neurofibrillary tangles

p-tau:

Hyperphosphorylated tau

TDP-43:

TAR DNA-binding protein-43

TLE:

Temporal lobe epilepsy

WAIS:

Wechsler Adult Intelligence Scale

WMS:

Wechsler Memory Scale

References

  1. Schmidt D, Schachter SC (2014) Drug treatment of epilepsy in adults. BMJ 348:g254. https://doi.org/10.1136/bmj.g254

    Article  PubMed  Google Scholar 

  2. Pascual MR (2007) Temporal lobe epilepsy: clinical semiology and neurophysiological studies. Semin Ultrasound CT MR 28(6):416–423. https://doi.org/10.1053/j.sult.2007.09.004

    Article  PubMed  Google Scholar 

  3. Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 42(6):796–803

    Article  PubMed  Google Scholar 

  4. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54(7):1315–1329

    Article  PubMed  Google Scholar 

  5. Thom M (2014) Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 40(5):520–543. https://doi.org/10.1111/nan.12150

    Article  PubMed  PubMed Central  Google Scholar 

  6. Voss JL, Bridge DJ, Cohen NJ, Walker JA (2017) A closer look at the hippocampus and memory. Trends Cogn Sci 21(8):577–588

    Article  PubMed  PubMed Central  Google Scholar 

  7. Coras R, Pauli E, Li J, Schwarz M, Rössler K, Buchfelder M, Hamer H, Stefan H, Blumcke I (2014) Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain 137(7):1945–1957

    Article  PubMed  Google Scholar 

  8. Prada Jardim A, Liu J, Baber J, Michalak Z, Reeves C, Ellis M, Novy J, de Tisi J, McEvoy A, Miserocchi A (2018) Characterising subtypes of hippocampal sclerosis and reorganization: correlation with pre and postoperative memory deficit. Brain Pathol 28(2):143–154

    Article  CAS  PubMed  Google Scholar 

  9. Rausch R, Babb TL (1993) Hippocampal neuron loss and memory scores before and after temporal lobe surgery for epilepsy. Arch Neurol 50(8):812–817

    Article  CAS  PubMed  Google Scholar 

  10. de Brito Toscano EC, Vieira ÉLM, Portela ACDC, Caliari MV, Brant JAS, Giannetti AV, Suemoto CK, Leite REP, Nitrini R, Rachid MA (2020) Microgliosis is associated with visual memory decline in patients with temporal lobe epilepsy and hippocampal sclerosis: A clinicopathologic study. Epilepsy Behav 102:106643

    Article  Google Scholar 

  11. Elverman KH, Resch ZJ, Quasney EE, Sabsevitz DS, Binder JR, Swanson SJ (2019) Temporal lobe epilepsy is associated with distinct cognitive phenotypes. Epilepsy Behav 96:61–68. https://doi.org/10.1016/j.yebeh.2019.04.015

    Article  PubMed  Google Scholar 

  12. Hermann BP, Seidenberg M, Haltiner A, Wyler AR (1995) Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia 36(2):137–145. https://doi.org/10.1111/j.1528-1157.1995.tb00972.x

    Article  CAS  PubMed  Google Scholar 

  13. Sen A, Capelli V, Husain M (2018) Cognition and dementia in older patients with epilepsy. Brain 141(6):1592–1608

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo L, Bai G, Zhang H, Lu D, Zheng J, Xu G (2017) Cognitive functioning in temporal lobe epilepsy: a BOLD-fMRI study. Mol Neurobiol 54(10):8361–8369

    Article  CAS  PubMed  Google Scholar 

  15. Xi Z-Q, Wang X-F, Shu X-F, Chen G-J, Xiao F, Sun J-J, Zhu X (2011) Is intractable epilepsy a tauopathy? Med Hypotheses 76(6):897–900

    Article  PubMed  Google Scholar 

  16. Gourmaud S, Shou H, Irwin DJ, Sansalone K, Jacobs LM, Lucas TH, Marsh ED, Davis KA, Jensen FE, Talos DM (2020) Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy. Brain 143(1):191–209

    Article  PubMed  Google Scholar 

  17. Paudel YN, Angelopoulou E, Jones NC, O’Brien TJ, Kwan P, Piperi C, Othman I, Shaikh MF (2019) Tau related pathways as a connecting link between epilepsy and Alzheimer’s disease. ACS Chem Neurosci 10(10):4199–4212

    Article  CAS  PubMed  Google Scholar 

  18. Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh M (2020) Revisiting the impact of neurodegenerative proteins in epilepsy: focus on alpha-synuclein, beta-amyloid, and tau. Biology 9(6):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, Hegde M, Cornes SB, Henry ML, Nelson AB, Seeley WW, Geschwind MD, Gorno-Tempini ML, Shih T, Kirsch HE, Garcia PA, Miller BL, Mucke L (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurology 70(9):1158–1166. https://doi.org/10.1001/jamaneurol.2013.136

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sánchez MP, García-Cabrero AM, Sánchez-Elexpuru G, Burgos DF, Serratosa JM (2018) Tau-induced pathology in epilepsy and dementia: notions from patients and animal models. Int J Mol Sci 19(4):1092

    Article  PubMed  PubMed Central  Google Scholar 

  21. Høgh P, Smith SJ, Scahill RI, Chan D, Harvey RJ, Fox NC, Rossor MN (2002) Epilepsy presenting as AD: neuroimaging, electroclinical features, and response to treatment. Neurology 58(2):298–301. https://doi.org/10.1212/wnl.58.2.298

    Article  PubMed  Google Scholar 

  22. Joshi A, Teng E, Tassniyom K, Mendez MF (2014) Hippocampal and mesial temporal sclerosis in early-onset frontotemporal lobar degeneration versus Alzheimer’s disease. Am J Alzheimers Dis Other Dement 29(1):45–49

    Article  Google Scholar 

  23. Cleveland DW, Hwo S-Y, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116 (2):227-247. https://doi.org/10.1016/0022-2836(77)90214-5

  24. Pîrşcoveanu DFV, Pirici I, Tudorică V, Bălşeanu T-A, Albu V-C, Bondari S, Bumbea AM, Pîrşcoveanu M (2017) Tau protein in neurodegenerative diseases—a review. Romanian J Morphol Embryol 58(4):1141–1150

    Google Scholar 

  25. Lane CA, Hardy J, Schott JM (2018) Alzheimer's disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  26. Nelson PT, Schmitt FA, Lin Y, Abner EL, Jicha GA, Patel E, Thomason PC, Neltner JH, Smith CD, Santacruz KS (2011) Hippocampal sclerosis in advanced age: clinical and pathological features. Brain 134(5):1506–1518

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rabinovici GD, Miller BL (2010) Frontotemporal lobar degeneration. CNS drugs 24(5):375–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sobue G, Ishigaki S, Watanabe H (2018) Pathogenesis of frontotemporal lobar degeneration: insights from loss of function theory and early involvement of the caudate nucleus. Front Neurosci 12(473). https://doi.org/10.3389/fnins.2018.00473

  29. Tai XY, Koepp M, Duncan JS, Fox N, Thompson P, Baxendale S, Liu JY, Reeves C, Michalak Z, Thom M (2016) Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain 139(9):2441–2455

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thom M, Liu JY, Thompson P, Phadke R, Narkiewicz M, Martinian L, Marsdon D, Koepp M, Caboclo L, Catarino CB, Sisodiya SM (2011) Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study. Brain 134(Pt 10):2969–2981. https://doi.org/10.1093/brain/awr209

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sima X, Xu J, Li J, Zhong W, You C (2014) Expression of β-amyloid precursor protein in refractory epilepsy. Mol Med Rep 9(4):1242–1248. https://doi.org/10.3892/mmr.2014.1977

    Article  CAS  PubMed  Google Scholar 

  32. Lee EB, Lee VM, Trojanowski JQ, Neumann M (2008) TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol 115(3):305–311. https://doi.org/10.1007/s00401-007-0331-5

    Article  CAS  PubMed  Google Scholar 

  33. Smith KM, Blessing MM, Parisi JE, Britton JW, Mandrekar J, Cascino GD (2019) Tau deposition in young adults with drug-resistant focal epilepsy. Epilepsia 60(12):2398–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Toscano ECB, Vieira ÉL, Portela AC, Reis JL, Caliari MV, Giannetti AV, Gonçalves AP, Siqueira JM, Suemoto CK, Leite RE (2019) Bcl-2/Bax ratio increase does not prevent apoptosis of glia and granular neurons in patients with temporal lobe epilepsy. Neuropathology 39(5):348–357

    Article  CAS  PubMed  Google Scholar 

  35. Calderon-Garciduenas AL, Mathon B, Levy P, Bertrand A, Mokhtari K, Samson V, Thuries V, Lambrecq V, Nguyen VM, Dupont S, Adam C, Baulac M, Clemenceau S, Duyckaerts C, Navarro V, Bielle F (2018) New clinicopathological associations and histoprognostic markers in ILAE types of hippocampal sclerosis. https://doi.org/10.1111/bpa.12596

  36. Grinberg LT, de Lucena Ferretti RE, Farfel JM, Leite R, Pasqualucci CA, Rosemberg S, Nitrini R, PHN S, Jacob Filho W, Group BABS (2007) Brain bank of the Brazilian aging brain study group—a milestone reached and more than 1,600 collected brains. Cell Tissue Bank 8(2):151–162

    Article  PubMed  Google Scholar 

  37. Mirra SS, Heyman A, McKeel D, Sumi S, Crain BJ, Brownlee L, Vogel F, Hughes J, Van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer's Disease (CERAD): Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41(4):479–479

    Article  CAS  PubMed  Google Scholar 

  38. Wechsler D (1945) Wechsler memory scale. Psychological Corporation, San Antonio, TX, US, Wechsler memory scale

    Google Scholar 

  39. Wechsler D (2008) Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). San Antonio, TX: NCS Pearson 22(498):1

    Google Scholar 

  40. Bellack AS, Hersen M (1998) Comprehensive clinical psychology. Pergamon Amsterdam, New York

    Book  Google Scholar 

  41. Raiford SE, Coalson DL, Saklofske DH, Weiss LG (2010) Practical issues in WAIS-IV administration and scoring. WAIS-IV Clinical Use and Interpretation. Elsevier, In, pp. 25–59

    Google Scholar 

  42. Kaplan E, Goodglass H, Weintraub S (2001) Boston naming test.

  43. Strauss E, Sherman EM, Spreen O (2006) A compendium of neuropsychological tests: administration, norms, and commentary. American Chemical Society

    Google Scholar 

  44. Morris JC (1993) The Clinical Dementia Rating (CDR). Current version and scoring rules 43(11):2412–2412-a. https://doi.org/10.1212/WNL.43.11.2412-a

    Article  CAS  Google Scholar 

  45. Ferretti REL, Damin AE, Brucki SMD, Morillo LS, Perroco TR, Campora F, Moreira EG, Balbino ÉS, Lima MCA, Battela C (2010) Post-Mortem diagnosis of dementia by informant interview. Dement Neuropsychologia 4(2):138–144

    Article  Google Scholar 

  46. Moloney CM, Lowe VJ, Murray ME (2021) Visualization of neurofibrillary tangle maturity in Alzheimer's disease: a clinicopathologic perspective for biomarker research. Alzheimer's & Dementia

    Google Scholar 

  47. Acharya MM, Hattiangady B, Shetty AK (2008) Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol 84(4):363–404

    Article  CAS  PubMed  Google Scholar 

  48. Mackenzie IR, Miller LA (1994) Senile plaques in temporal lobe epilepsy. Acta Neuropathol 87(5):504–510

    Article  CAS  PubMed  Google Scholar 

  49. Holth JK, Bomben VC, Reed JG, Inoue T, Younkin L, Younkin SG, Pautler RG, Botas J, Noebels JL (2013) Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci 33(4):1651–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alves M, Kenny A, de Leo G, Beamer EH, Engel T (2019) Tau phosphorylation in a mouse model of temporal lobe epilepsy. Front Aging Neurosci 11:308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Engel T, Goñi-Oliver P, Lucas JJ, Avila J, Hernández F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99(6):1445–1455

    Article  CAS  PubMed  Google Scholar 

  52. Sen A, Thom M, Martinian L, Jacobs T, Nikolic M, Sisodiya SM (2006) Deregulation of cdk5 in Hippocampal sclerosis. J Neuropathol Exp Neurol 65(1):55–66. https://doi.org/10.1097/01.jnen.0000195940.48033.a2

    Article  CAS  PubMed  Google Scholar 

  53. Tai X, Bernhardt B, Thom M, Thompson P, Baxendale S, Koepp M, Bernasconi N (2018) Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 44(1):70–90

    Article  CAS  PubMed  Google Scholar 

  54. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  55. Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, Bahrami A, Solanki J, Bandyopadhyay A, Morris JK (2016) Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res 1630:225–240

    Article  CAS  PubMed  Google Scholar 

  56. Wharton SB, Minett T, Drew D, Forster G, Matthews F, Brayne C, Ince PG (2016) Epidemiological pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and ageing brain study. Acta Neuropathol Commun 4:11. https://doi.org/10.1186/s40478-016-0275-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL (2017) Epileptic activity in Alzheimer's disease: causes and clinical relevance. Lancet Neurol 16(4):311–322. https://doi.org/10.1016/s1474-4422(17)30044-3

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu S-j, Zheng P, Wright DK, Dezsi G, Braine E, Nguyen T, Corcoran NM, Johnston LA, Hovens CM, Mayo JN (2016) Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 139(7):1919–1938

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), which funded this study. We also grateful to the patients with MTLE and the Biobank for Aging Studies for the sclerotic and control hippocampi, as well as to the Centro de Aquisição de Imagens (CAPI) da UFMG for the scanning of histological slides.

Author information

Authors and Affiliations

Authors

Contributions

Eliana Toscano and Érica Vieira designed this study, collected, analyzed, and interpreted clinical data. Eliana Toscano performed the histological examination, immunohistochemical reactions, morphometric evaluation, statistical analyses, and manuscript drafting. Lea Grinberg supported histopathological evaluation and data interpretation. Natalia Rocha and Regina Paradela supported statistical analysis and data interpretation. Joseane Brant applied the neuropsychologist tests. Alexandre Giannetti contributed for collection of sclerotic hippocampi. Claudia Suemoto, Renata Leite, and Ricardo Nitrini provided the control hippocampi. Milene Rachid and Antônio Teixeira coordinated the study and supported data interpretation. All authors contributed and approved the final manuscript.

Corresponding author

Correspondence to Eliana C. B. Toscano.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee in Research of the Universidade Federal de Minas Gerais (COEP-UFMG), protocol number 1.939.783.

Consent to Participate

All participants have given informed consent for this study. In the case of postmortem samples, the next of kin has given consent for each examination.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• P-tau burden in hippocampal formation is significantly higher in young/middle age individuals with MTLE compared to matched controls.

• Patients with MTLE had both Alzheimer’s disease like- and divergent patterns of hyperphosphorylated tau deposits.

• Increased neuronal expression of p-tau was associated with impaired attention, but not with memory deficits in MTLE.

Supplementary Information

Supplementary Figure.

Neuronal expression of p-tau in sclerotic hippocampi of MTLE patients with and without cognitive impairment. The percentage of immunostained neurons for p-tau was associated with impairments in both BNT (language function) and digit span forward test (attention function) (E and F), but not with deficits in episodic memory (A-D). t-test was utilized in all the analyzes. Data are mean ± SD and are considered significant when p≤0.05. BNT: Boston naming test; MTLE: mesial temporal lobe epilepsy; SD: standard deviation of the mean. (PNG 231 kb)

High Resolution Image (TIF 616 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toscano, E.C.B., Vieira, É.L.M., Grinberg, L.T. et al. Hyperphosphorylated Tau in Mesial Temporal Lobe Epilepsy: a Neuropathological and Cognitive Study. Mol Neurobiol 60, 2174–2185 (2023). https://doi.org/10.1007/s12035-022-03190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03190-x

Keywords

Navigation