Skip to main content
Log in

Trajectories of brain remodeling in temporal lobe epilepsy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy has been usually associated with progressive brain atrophy due to neuronal cell loss. However, recent animal models demonstrated a dual effect of epileptic seizures with initial enhancement of hippocampal neurogenesis followed by abnormal astrocyte proliferation and neurogenesis depletion in the chronic stage. Our aim was to test for the hypothesized bidirectional pattern of epilepsy-associated brain remodeling in the context of the presence and absence of mesial temporal lobe sclerosis. We acquired MRIs from a large cohort of mesial temporal lobe epilepsy patients with or without hippocampus sclerosis on radiological examination. The statistical analysis tested explicitly for common and differential brain patterns between the two patients’ cohorts and healthy controls within the computational anatomy framework of voxel-based morphometry. The main effect of disease was associated with continuous hippocampus volume loss ipsilateral to the seizure onset zone in both temporal lobe epilepsy cohorts. The post hoc simple effects tests demonstrated bilateral hippocampus volume increase in the early epilepsy stages in patients without hippocampus sclerosis. Early age of onset and longer disease duration correlated with volume decrease in the ipsilateral hippocampus. Our findings of seizure-induced hippocampal remodeling are associated with specific patterns of mesial temporal lobe atrophy that are modulated by individual clinical phenotype features. Directionality of hippocampus volume changes strongly depends on the chronicity of disease. Specific anatomy differences represent a snapshot within a progressive continuum of seizure-induced structural remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AO:

Age of disease onset

FS:

Frequency of seizures

FWE:

Family-wise error correction

MRI−:

MRI negative temporal lobe epilepsy

MTS:

Mesial temporal lobe sclerosis

ROI:

Region-of-interest

SPM:

Statistical parametric mapping

TD:

Time duration of disease

TIV:

Total intracranial volume

TLE:

Medial temporal lobe epilepsy

VBM:

Voxel-based morphometry

References

  1. Ahmadi ME, Hagler DJ Jr, McDonald CR, Tecoma ES, Iragui VJ, Dale AM, Halgren E (2009) Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. AJNR 30:1740–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alonso-Nanclares L, Kastanauskaite A, Rodriguez JR, Gonzalez-Soriano J, Defelipe J (2011) A stereological study of synapse number in the epileptic human hippocampus. Front Neuroanat 5:8

    PubMed  PubMed Central  Google Scholar 

  3. Amlerova J, Laczo J, Vlcek K, Javurkova A, Andel R, Marusic P (2013) Risk factors for spatial memory impairment in patients with temporal lobe epilepsy. Epilepsy Behav 26:57–60

    PubMed  Google Scholar 

  4. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38:95–113

    PubMed  Google Scholar 

  5. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851

    PubMed  Google Scholar 

  6. Baulac M, De Grissac N, Hasboun D, Oppenheim C, Adam C, Arzimanoglou A, Semah F, Lehericy S, Clemenceau S, Berger B (1998) Hippocampal developmental changes in patients with partial epilepsy: magnetic resonance imaging and clinical aspects. Ann Neurol 44:223–233

    CAS  PubMed  Google Scholar 

  7. Baulac S, Gourfinkel-An I, Nabbout R, Huberfeld G, Serratosa J, Leguern E, Baulac M (2004) Fever, genes, and epilepsy. Lancet Neurol 3:421–430

    CAS  PubMed  Google Scholar 

  8. Bell B, Lin JJ, Seidenberg M, Hermann B (2011) The neurobiology of cognitive disorders in temporal lobe epilepsy. Nat Rev Neurol 7:154–164

    PubMed  Google Scholar 

  9. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshe SL, Nordli D, Plouin P, Scheffer IE (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685

    PubMed  Google Scholar 

  10. Bernasconi N, Duchesne S, Janke A, Lerch J, Collins DL, Bernasconi A (2004) Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. NeuroImage 23:717–723

    CAS  PubMed  Google Scholar 

  11. Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N (2015) Magnetic resonance imaging pattern learning in temporal lobe epilepsy: classification and prognostics. Ann Neurol 77:436–446

    PubMed  Google Scholar 

  12. Bernhardt BC, Kim H, Bernasconi N (2013) Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology 81:1840–1847

    PubMed  PubMed Central  Google Scholar 

  13. Bonilha L, Rorden C, Castellano G, Pereira F, Rio PA, Cendes F, Li LM (2004) Voxel-based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy. Arch Neurol 61:1379–1384

    PubMed  Google Scholar 

  14. Briellmann RS, Berkovic SF, Syngeniotis A, King MA, Jackson GD (2002) Seizure-associated hippocampal volume loss: a longitudinal magnetic resonance study of temporal lobe epilepsy. Ann Neurol 51:641–644

    PubMed  Google Scholar 

  15. Caciagli L, Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N (2014) Functional network alterations and their structural substrate in drug-resistant epilepsy. Front Neurosci 8:411

    PubMed  PubMed Central  Google Scholar 

  16. Coan AC, Campos BM, Yasuda CL, Kubota BY, Bergo FP, Guerreiro CA, Cendes F (2014) Frequent seizures are associated with a network of gray matter atrophy in temporal lobe epilepsy with or without hippocampal sclerosis. PLoS ONE 9:e85843

    PubMed  PubMed Central  Google Scholar 

  17. Coras R, Siebzehnrubl FA, Pauli E, Huttner HB, Njunting M, Kobow K, Villmann C, Hahnen E, Neuhuber W, Weigel D, Buchfelder M, Stefan H, Beck H, Steindler DA, Blumcke I (2010) Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain 133:3359–3372

    PubMed  Google Scholar 

  18. Dukart J, Sambataro F, Bertolino A (2015) Accurate prediction of conversion to Alzheimer's disease using imaging, genetic, and neuropsychological biomarkers. JAD 49:1143–1159

    Google Scholar 

  19. Engel J Jr (2006) ILAE classification of epilepsy syndromes. Epilepsy Res 70(Suppl 1):S5–10

    PubMed  Google Scholar 

  20. Evans SJ, Elliott G, Reynders H, Isaac CL (2014) Can temporal lobe epilepsy surgery ameliorate accelerated long-term forgetting? Neuropsychologia 53:64–74

    PubMed  Google Scholar 

  21. Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14:337–349

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goubran M, Hammond RR, de Ribaupierre S, Burneo JG, Mirsattari S, Steven DA, Parrent AG, Peters TM, Khan AR (2015) Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy. Ann Neurol 77:237–250

    PubMed  Google Scholar 

  23. Holtkamp M, Schuchmann S, Gottschalk S, Meierkord H (2004) Recurrent seizures do not cause hippocampal damage. J Neurol 251:458–463

    PubMed  Google Scholar 

  24. Hutchinson E, Pulsipher D, Dabbs K, y Gutierrez AM, Sheth R, Jones J, Seidenberg M, Meyerand E, Hermann B (2010) Children with new-onset epilepsy exhibit diffusion abnormalities in cerebral white matter in the absence of volumetric differences. Epilepsy Res 88:208–214

    PubMed  Google Scholar 

  25. Isaeva E, Romanov A, Holmes GL, Isaev D (2015) Status epilepticus results in region-specific alterations in seizure susceptibility along the hippocampal longitudinal axis. Epilepsy Res 110:166–170

    PubMed  Google Scholar 

  26. Janszky J, Woermann FG, Barsi P, Schulz R, Halasz P, Ebner A (2003) Right hippocampal sclerosis is more common than left after febrile seizures. Neurology 60:1209–1210

    CAS  PubMed  Google Scholar 

  27. Kasperaviciute D, Catarino CB, Matarin M, Leu C, Novy J, Tostevin A, Leal B, Hessel EV, Hallmann K, Hildebrand MS, Dahl HH, Ryten M, Trabzuni D, Ramasamy A, Alhusaini S, Doherty CP, Dorn T, Hansen J, Kramer G, Steinhoff BJ, Zumsteg D, Duncan S, Kalviainen RK, Eriksson KJ, Kantanen AM, Pandolfo M, Gruber-Sedlmayr U, Schlachter K, Reinthaler EM, Stogmann E, Zimprich F, Theatre E, Smith C, O'Brien TJ, Meng Tan K, Petrovski S, Robbiano A, Paravidino R, Zara F, Striano P, Sperling MR, Buono RJ, Hakonarson H, Chaves J, Costa PP, Silva BM, da Silva AM, de Graan PN, Koeleman BP, Becker A, Schoch S, von Lehe M, Reif PS, Rosenow F, Becker F, Weber Y, Lerche H, Rossler K, Buchfelder M, Hamer HM, Kobow K, Coras R, Blumcke I, Scheffer IE, Berkovic SF, Weale ME, Consortium UKBE, Delanty N, Depondt C, Cavalleri GL, Kunz WS, Sisodiya SM (2013) Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 136:3140–3150

    PubMed  PubMed Central  Google Scholar 

  28. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741–757

    PubMed  Google Scholar 

  29. Kemmotsu N, Girard HM, Bernhardt BC, Bonilha L, Lin JJ, Tecoma ES, Iragui VJ, Hagler DJ Jr, Halgren E, McDonald CR (2011) MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia 52:2257–2266

    PubMed  PubMed Central  Google Scholar 

  30. Kuruba R, Hattiangady B, Shetty AK (2009) Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 14(Suppl 1):65–73

    PubMed  Google Scholar 

  31. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshe SL, Perucca E, Wiebe S, French J (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51:1069–1077

    CAS  PubMed  Google Scholar 

  32. Labate A, Cerasa A, Gambardella A, Aguglia U, Quattrone A (2008) Hippocampal and thalamic atrophy in mild temporal lobe epilepsy: a VBM study. Neurology 71:1094–1101

    CAS  PubMed  Google Scholar 

  33. Leite JP, Neder L, Arisi GM, Carlotti CG Jr, Assirati JA, Moreira JE (2005) Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia 46(Suppl 5):134–141

    PubMed  Google Scholar 

  34. Lewis DV, Shinnar S, Hesdorffer DC, Bagiella E, Bello JA, Chan S, Xu Y, MacFall J, Gomes WA, Moshe SL, Mathern GW, Pellock JM, Nordli DR Jr, Frank LM, Provenzale J, Shinnar RC, Epstein LG, Masur D, Litherland C, Sun S, Team FS (2014) Hippocampal sclerosis after febrile status epilepticus: the FEBSTAT study. Ann Neurol 75:178–185

    PubMed  PubMed Central  Google Scholar 

  35. Liu RS, Lemieux L, Bell GS, Sisodiya SM, Bartlett PA, Shorvon SD, Sander JW, Duncan JS (2005) Cerebral damage in epilepsy: a population-based longitudinal quantitative MRI study. Epilepsia 46:1482–1494

    PubMed  Google Scholar 

  36. Lorio S, Fresard S, Adaszewski S, Kherif F, Chowdhury R, Frackowiak RS, Ashburner J, Helms G, Weiskopf N, Lutti A, Draganski B (2016) New tissue priors for improved automated classification of subcortical brain structures on MRI. NeuroImage 130:157–166

    CAS  PubMed  Google Scholar 

  37. Maccotta L, Moseley ED, Benzinger TL, Hogan RE (2015) Beyond the CA1 subfield: local hippocampal shape changes in MRI-negative temporal lobe epilepsy. Epilepsia 56:780–788

    PubMed  PubMed Central  Google Scholar 

  38. Mueller SG, Laxer KD, Cashdollar N, Buckley S, Paul C, Weiner MW (2006) Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia 47:900–907

    PubMed  PubMed Central  Google Scholar 

  39. O'Muircheartaigh J, Dean DC 3rd, Dirks H, Waskiewicz N, Lehman K, Jerskey BA, Deoni SC (2013) Interactions between white matter asymmetry and language during neurodevelopment. J Neurosci 33:16170–16177

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, Duncan JS (2007) Abnormalities of language networks in temporal lobe epilepsy. NeuroImage 36:209–221

    PubMed  Google Scholar 

  41. Reeves C, Tachrount M, Thomas D, Michalak Z, Liu J, Ellis M, Diehl B, Miserocchi A, McEvoy AW, Eriksson S, Yousry T, Thom M (2015) Combined ex vivo 9.4T MRI and quantitative histopathological study in normal and pathological neocortical resections in focal epilepsy. Brain Pathol 26:319–333

    PubMed  PubMed Central  Google Scholar 

  42. Riederer F, Lanzenberger R, Kaya M, Prayer D, Serles W, Baumgartner C (2008) Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study. Neurology 71:419–425

    CAS  PubMed  Google Scholar 

  43. Shinnar S (2003) Febrile seizures and mesial temporal sclerosis. Epilepsy Curr Am Epilepsy Soc 3:115–118

    Google Scholar 

  44. Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ, Duncan JS (2015) Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy. Epilepsy Res 110:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sierra A, Grohn O, Pitkanen A (2015) Imaging microstructural damage and plasticity in the hippocampus during epileptogenesis. Neuroscience 309:162–172

    CAS  PubMed  Google Scholar 

  46. Sierra A, Martin-Suarez S, Valcarcel-Martin R, Pascual-Brazo J, Aelvoet SA, Abiega O, Deudero JJ, Brewster AL, Bernales I, Anderson AE, Baekelandt V, Maletic-Savatic M, Encinas JM (2015) Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell 16:488–503

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sutula TP (2004) Mechanisms of epilepsy progression: current theories and perspectives from neuroplasticity in adulthood and development. Epilepsy Res 60:161–171

    PubMed  Google Scholar 

  48. Thom M (2014) Review: hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 40:520–543

    PubMed  PubMed Central  Google Scholar 

  49. Thom M, Liagkouras I, Martinian L, Liu J, Catarino CB, Sisodiya SM (2012) Variability of sclerosis along the longitudinal hippocampal axis in epilepsy: a post mortem study. Epilepsy Res 102:45–59

    PubMed  PubMed Central  Google Scholar 

  50. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289

    CAS  PubMed  Google Scholar 

  51. Vaughan DN, Rayner G, Tailby C, Jackson GD (2016) MRI-negative temporal lobe epilepsy: a network disorder of neocortical connectivity. Neurology 87:1934–1942

    PubMed  Google Scholar 

  52. Zhong P, Yan Z (2016) Distinct physiological effects of dopamine D4 receptors on prefrontal cortical pyramidal neurons and fast-spiking interneurons. Cereb Cortex 26:180–191

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants for their beneficial contribution to the study and Lester Melie-Garcia for support on preprocessing of structural MRI data.

Funding

BD and ER are supported by the Swiss National Science Foundation (NCCR Synapsy, project Grant Nr 32003B_159780 and SPUM 33CM30_140332/1) and the Leenaards Foundation. E. S. was partly supported by the SHARP Grant from the Intelligence Advanced Research Projects Activity (IARPA). The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant agreement no. 604102 (Human Brain Project). LREN is very grateful to the Roger De Spoelberch and Partridge Foundations for their generous financial support.

Author information

Authors and Affiliations

Authors

Contributions

ER, ES, RW, MS and BD were involved in conception of the project. ER and BD were involved in design of the study. ES and GV were involved in acquisition of data. ER and SM performed imaging preprocessing. ER analyzed the data. ER, FK and BD interpreted the data. ER and BD prepared the manuscript. All the authors reviewed, edited the manuscript and were involved in subsequent revisions.

Corresponding author

Correspondence to Bogdan Draganski.

Ethics declarations

Conflicts of interest

Nothing to report.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

415_2019_9546_MOESM2_ESM.tif

Fig. s1. Structural remodeling in temporal lobe epilepsy subtypes. Statistical parametric maps – SPMs, of between-groups t tests in (A and B) MRI- and (C) MTS TLE in comparison to C, based on VBM whole-brain analysis, displayed on axial T1-weighted image in standard MNI space, at statistical threshold of p<0.001, uncorrected for multiple comparisons. A RED color– increases in volume estimates [for left MRI->C], A-C BLUE color– decreases in left TLE [for C>left MRI- or MTS], B-CGREEN color– decreases in right TLE [for C>right MRI- or MTS]. Abbreviations: TLE – temporal lobe epilepsy, MRI- – MRI negative, MTS – mesial temporal lobe sclerosis, C – healthy controls (TIF 13652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roggenhofer, E., Santarnecchi, E., Muller, S. et al. Trajectories of brain remodeling in temporal lobe epilepsy. J Neurol 266, 3150–3159 (2019). https://doi.org/10.1007/s00415-019-09546-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09546-z

Keywords

Navigation