Skip to main content

Advertisement

Log in

Exosomes from Inflamed Macrophages Promote the Progression of Parkinson’s Disease by Inducing Neuroinflammation

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammation is a common feature both for Parkinson’s disease (PD) and obesity-associated metabolic syndromes. Inflammation mediated by inflamed macrophages in white adipose tissue plays a pivotal role for the pathogenesis of metabolic syndromes. Exosomes are important carriers connecting peripheral tissues and the central nervous system (CNS). Therefore, we speculate that exosomes derived from inflamed macrophages may be involved in the pathological progression of PD. Here, we prepared exosomes from lipopolysaccharide (LPS) or interferon gamma (IFNγ) treated macrophages (inflamed macrophages) and examined their potential roles in PD. Our data showed that exosomes from inflamed macrophages stimulate proinflammatory cytokine expression in primary microglia and astrocytes. In vivo, inflamed macrophage exosomes induce behavioral defects in mice as evidenced by shortened duration in the rotarod test and prolonged latency in the pole test. The treatment of exosomes also reduces tyrosine hydroxylase (TH) positive cells in the substantia nigra pars compacta (SNpc) and striatum. All these PD-like phenotypes are likely due to the activation of microglia and astrocytes induced by exosomes from inflamed macrophages. Exosome sequencing, together with bioinformatics analysis and functional studies, revealed that exosomal miRNAs such as miR-155-5p are likely a key factor for inducing an inflammatory response in glial cells. These results indicate that exosomes derived from inflamed macrophages are likely a causative factor for developing PD. In this regard, inflamed macrophage exosomes might be a linker transducing the peripheral tissue inflammation into the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397(10291):2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

    Article  CAS  PubMed  Google Scholar 

  2. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  3. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360

    Article  PubMed  Google Scholar 

  5. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783. https://doi.org/10.1126/science.aag2590

    Article  CAS  PubMed  Google Scholar 

  7. Nam GE, Kim SM, Han K, Kim NH, Chung HS, Kim JW, Han B, Cho SJ, Yu JH, Park YG, Choi KM (2018) Metabolic syndrome and risk of Parkinson disease: a nationwide cohort study. PLoS Med 15(8):e1002640. https://doi.org/10.1371/journal.pmed.1002640

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheong JLY, de Pablo-Fernandez E, Foltynie T, Noyce AJ (2020) The association between type 2 diabetes mellitus and Parkinson’s disease. J Parkinsons Dis 10(3):775–789. https://doi.org/10.3233/JPD-191900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Labandeira CM, Fraga-Bau A, Arias Ron D, Alvarez-Rodriguez E, Vicente-Alba P, Lago-Garma J, Rodriguez-Perez AI (2022) Parkinson’s disease and diabetes mellitus: common mechanisms and treatment repurposing. Neural Regen Res 17(8):1652–1658. https://doi.org/10.4103/1673-5374.332122

    Article  PubMed  PubMed Central  Google Scholar 

  10. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871. https://doi.org/10.1016/j.cell.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156(1–2):20–44. https://doi.org/10.1016/j.cell.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakers A, De Siqueira MK, Seale P, Villanueva CJ (2022) Adipose-tissue plasticity in health and disease. Cell 185(3):419–446. https://doi.org/10.1016/j.cell.2021.12.016

    Article  CAS  PubMed  Google Scholar 

  13. Lee YS, Wollam J, Olefsky JM (2018) An integrated view of immunometabolism. Cell 172(1–2):22–40. https://doi.org/10.1016/j.cell.2017.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478):eaau6977. https://doi.org/10.1126/science.aau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pluchino S, Smith JA (2019) Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell 177(2):225–227. https://doi.org/10.1016/j.cell.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  16. Kumari M, Anji A (2022) Small but mighty-exosomes, novel intercellular messengers in neurodegeneration. Biology (Basel) 11(3):413. https://doi.org/10.3390/biology11030413

  17. Pinnell JR, Cui M, Tieu K (2021) Exosomes in Parkinson disease. J Neurochem 157(3):413–428. https://doi.org/10.1111/jnc.15288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Upadhya R, Shetty AK (2021) Extracellular vesicles for the diagnosis and treatment of Parkinson’s disease. Aging Dis 12(6):1438–1450. https://doi.org/10.14336/AD.2021.0516

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi H, Choi K, Kim DH, Oh BK, Yim H, Jo S, Choi C (2022) Strategies for targeted delivery of exosomes to the brain: advantages and challenges. Pharmaceutics 14(3):672. https://doi.org/10.3390/pharmaceutics14030672

  20. Floden AM, Li S, Combs CK (2005) Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 25(10):2566–2575. https://doi.org/10.1523/JNEUROSCI.4998-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng S, Wang C, Ma J, Jiang K, Jiang Y, Gu X, Sun C (2018) Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson’s disease models both in vitro and in vivo. Br J Pharmacol 175(4):631–643. https://doi.org/10.1111/bph.14110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Zhang S, Guan J, Jiang Y, Zhang J, Luo L (1868) Sun C (2022) SIRT1 attenuates neuroinflammation by deacetylating HSPA4 in a mouse model of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 5:166365. https://doi.org/10.1016/j.bbadis.2022.166365

    Article  CAS  Google Scholar 

  23. Wang Y, Li L, Wu Y, Zhang S, Ju Q, Yang Y, Jin Y, Shi H, Sun C (2022) CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res 177:106133. https://doi.org/10.1016/j.phrs.2022.106133

    Article  CAS  PubMed  Google Scholar 

  24. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581. https://doi.org/10.1016/s0301-0082(98)00069-0

    Article  CAS  PubMed  Google Scholar 

  25. Sun C, Wang M, Liu X, Luo L, Li K, Zhang S, Wang Y, Yang Y, Ding F, Gu X (2014) PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1alpha. Cell Rep 9(6):2250–2262. https://doi.org/10.1016/j.celrep.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  26. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247. https://doi.org/10.1007/s12035-010-8105-9

    Article  CAS  PubMed  Google Scholar 

  27. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184. https://doi.org/10.1172/JCI29881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  29. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830. https://doi.org/10.1172/JCI19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Appari M, Channon KM, McNeill E (2018) Metabolic regulation of adipose tissue macrophage function in obesity and diabetes. Antioxid Redox Signal 29(3):297–312. https://doi.org/10.1089/ars.2017.7060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky JM (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171(2):372-384 e312. https://doi.org/10.1016/j.cell.2017.08.035

    Article  CAS  PubMed  Google Scholar 

  32. Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre A, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ (2022) Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener 17(1):23. https://doi.org/10.1186/s13024-022-00524-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su R, Sun M, Wang W, Zhang J, Zhang L, Zhen J, Qian Y, Zheng Y, Wang X (2017) A novel immunosuppressor, (5R)-5-hydroxytriptolide, alleviates movement disorder and neuroinflammation in a 6-OHDA hemiparkinsonian rat model. Aging Dis 8(1):31–43. https://doi.org/10.14336/AD.2016.0929

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fang X, Ma J, Mu D, Li B, Lian B, Sun C (2020) FGF21 Protects dopaminergic neurons in Parkinson’s disease models via repression of neuroinflammation. Neurotox Res 37(3):616–627. https://doi.org/10.1007/s12640-019-00151-6

    Article  CAS  PubMed  Google Scholar 

  35. Li C, Qin S, Wen Y, Zhao W, Huang Y, Liu J (2022) Overcoming the blood-brain barrier: exosomes as theranostic nanocarriers for precision neuroimaging. J Control Release 349:902–916. https://doi.org/10.1016/j.jconrel.2022.08.002

    Article  CAS  PubMed  Google Scholar 

  36. Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI, Mustafaoglu N, Park TE, Ingber DE, Daisy CC, Moses MA (2019) Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano 13(12):13853–13865. https://doi.org/10.1021/acsnano.9b04397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumoto J, Stewart T, Sheng L, Li N, Bullock K, Song N, Shi M, Banks WA, Zhang J (2017) Transmission of alpha-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol Commun 5(1):71. https://doi.org/10.1186/s40478-017-0470-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S, Li S, Zhang L, Yang C, Yang P (2020) Progranulin inhibits LPS-induced macrophage M1 polarization via NF-small ka CyrillicB and MAPK pathways. BMC Immunol 21(1):32. https://doi.org/10.1186/s12865-020-00355-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang R, Wang X, Zhou Y, Xiao Y (2017) RANKL-induced M1 macrophages are involved in bone formation. Bone Res 5:17019. https://doi.org/10.1038/boneres.2017.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bandow K, Hasegawa H, Tomomura M, Tomomura A (2020) Caldecrin inhibits lipopolysaccharide-induced pro-inflammatory cytokines and M1 macrophage polarization through the immunoreceptor triggering receptor expressed in myeloid cells-2. Biochem Biophys Res Commun 523(4):1027–1033. https://doi.org/10.1016/j.bbrc.2020.01.045

    Article  CAS  PubMed  Google Scholar 

  41. Isaksson R, Casselbrant A, Elebring E, Hallberg M, Larhed M, Fandriks L (2020) Direct stimulation of angiotensin II type 2 receptor reduces nitric oxide production in lipopolysaccharide treated mouse macrophages. Eur J Pharmacol 868:172855. https://doi.org/10.1016/j.ejphar.2019.172855

    Article  CAS  PubMed  Google Scholar 

  42. Cuomo-Haymour N, Bergamini G, Russo G, Kulic L, Knuesel I, Martin R, Huss A, Tumani H, Otto M, Pryce CR (2022) Differential expression of serum extracellular vesicle miRNAs in multiple sclerosis: disease-stage specificity and relevance to pathophysiology. Int J Mol Sci 23(3):1664. https://doi.org/10.3390/ijms23031664

  43. Bokobza C, Joshi P, Schang AL, Csaba Z, Faivre V, Montane A, Galland A, Benmamar-Badel A, Bosher E, Lebon S, Schwendimann L, Mani S, Dournaud P, Besson V, Fleiss B, Gressens P, Van Steenwinckel J (2022) miR-146b protects the perinatal brain against microglia-induced hypomyelination. Ann Neurol 91(1):48–65. https://doi.org/10.1002/ana.26263

    Article  CAS  PubMed  Google Scholar 

  44. Ma Q, Zhao H, Tao Z, Wang R, Liu P, Han Z, Ma S, Luo Y, Jia J (2016) MicroRNA-181c exacerbates brain injury in acute ischemic stroke. Aging Dis 7(6):705–714. https://doi.org/10.14336/AD.2016.0320

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pan Z, Zhu LJ, Li YQ, Hao LY, Yin C, Yang JX, Guo Y, Zhang S, Hua L, Xue ZY, Zhang H, Cao JL (2014) Epigenetic modification of spinal miR-219 expression regulates chronic inflammation pain by targeting CaMKIIgamma. J Neurosci 34(29):9476–9483. https://doi.org/10.1523/JNEUROSCI.5346-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, Drexhage JA, Kamphuis WW, Kooij G, Vos JB, van der PouwKraan TC, van Zonneveld AJ, Horrevoets AJ, Prat A, Romero IA, de Vries HE (2013) MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 33(16):6857–6863. https://doi.org/10.1523/JNEUROSCI.3965-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Woodbury ME, Freilich RW, Cheng CJ, Asai H, Ikezu S, Boucher JD, Slack F, Ikezu T (2015) miR-155 Is Essential for inflammation-induced hippocampal neurogenic dysfunction. J Neurosci 35(26):9764–9781. https://doi.org/10.1523/JNEUROSCI.4790-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caggiu E, Paulus K, Mameli G, Arru G, Sechi GP, Sechi LA (2018) Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci 13:1–4. https://doi.org/10.1016/j.ensci.2018.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thome AD, Harms AS, Volpicelli-Daley LA, Standaert DG (2016) microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of parkinson disease. J Neurosci 36(8):2383–2390. https://doi.org/10.1523/JNEUROSCI.3900-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gong X, Huang M, Chen L (2022) Mechanism of miR-132–3p promoting neuroinflammation and dopaminergic neurodegeneration in Parkinson’s disease. eNeuro 9(1):ENEURO.0393-21.2021. https://doi.org/10.1523/ENEURO.0393-21.2021

  51. Han S, Lin F, Ruan Y, Zhao S, Yuan R, Ning J, Jiang K, Xie J, Li H, Li C, Rao T, Yu W, Xia Y, Zhou X, Cheng F (2021) miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-kappaB pathway. Int Immunopharmacol 99:108022. https://doi.org/10.1016/j.intimp.2021.108022

    Article  CAS  PubMed  Google Scholar 

  52. Peng S, Yan Y, Li R, Dai H, Xu J (2021) Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/beta-catenin pathway. Ann N Y Acad Sci 1503(1):48–59. https://doi.org/10.1111/nyas.14590

    Article  CAS  PubMed  Google Scholar 

  53. Li G, Wang B, Ding X, Zhang X, Tang J, Lin H (2021) Plasma extracellular vesicle delivery of miR-210-3p by targeting ATG7 to promote sepsis-induced acute lung injury by regulating autophagy and activating inflammation. Exp Mol Med 53(7):1180–1191. https://doi.org/10.1038/s12276-021-00651-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang K, Feng Y, Liang Y, Wu W, Chang C, Chen D, Chen S, Gao J, Chen G, Yi L, Cheng D, Zhen G (2021) Epithelial miR-206 targets CD39/extracellular ATP to upregulate airway IL-25 and TSLP in type 2-high asthma. JCI Insight 6(11):e148103. https://doi.org/10.1172/jci.insight.148103

  55. Ravanidis S, Bougea A, Papagiannakis N, Koros C, Simitsi AM, Pachi I, Breza M, Stefanis L, Doxakis E (2020) Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann Clin Transl Neurol 7(9):1594–1607. https://doi.org/10.1002/acn3.51146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111(41):14888–14893. https://doi.org/10.1073/pnas.1408301111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was provided by the National Key Research and Development Program of China (2017YFA0701304); the National Natural Science Foundation of China (81970747; 32271193); the Scientific Program of Changshu City (CS202236); the Scientific Program of Nantong City (MS22021010; MS22019005); the Nantong Science and Technology Foundation of China (JC2021058); and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Y. J., R. W., and L. L. performed the experiments and analyzed the data. L. S. analyzed the data. Y. G. and C. S. designed the study. Y. J. and C. S. wrote the manuscript. C. S. supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yunjuan Gu or Cheng Sun.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yan Jin and Runze Wu contributed equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Wu, R., Li, L. et al. Exosomes from Inflamed Macrophages Promote the Progression of Parkinson’s Disease by Inducing Neuroinflammation. Mol Neurobiol 60, 1914–1928 (2023). https://doi.org/10.1007/s12035-022-03179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03179-6

Keywords

Navigation